Skip to main content

Advertisement

Log in

Liver Cancer Classification Using Single Pass Neural Networks Based on Ultrasound Images: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Liver cancer is amongst the most cancer-related life threats worldwide. If not detected early, most liver diseases can lead to liver cancer. Early diagnosis of the disease depends on the physician's expertise; in some cases, it is difficult for even well-trained physicians to diagnose the condition by only visual inspection. With the help of automated detection systems (ADSs), medical experts can efficiently diagnose liver diseases, reducing the mortality rate due to liver cancer. This detailed study of various ADSs for liver disease detection is available today. The authors focus the analysis on the applications of single-pass neural networks in medical imaging. Also, special efforts explain the applications of single-pass neural networks in liver cancer classification using ultrasound imaging. Further, a detailed analysis is on the users' benefits of this non-iterative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Torbati, N., Ayatollahi, A., & Kermani, A. (2014). An efficient neural network based method for medical image segmentation. Computers in Biology and Medicine, 44(1), 76–87. https://doi.org/10.1016/j.compbiomed.2013.10.029

    Article  Google Scholar 

  2. Rhyou, S. Y., & Yoo, J. C. (2021). Cascaded deep learning neural network for automated liver steatosis diagnosis using ultrasound images. Sensors. https://doi.org/10.3390/s21165304

    Article  Google Scholar 

  3. Brehar, R., Mitrea, D. A., Vancea, F., Marita, T., Nedevschi, S., Lupsor-Platon, M., & Badea, R. I. (2020). Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images. Sensors (Switzerland), 20(11), 1–22. https://doi.org/10.3390/s20113085

    Article  Google Scholar 

  4. Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525–536. https://doi.org/10.1109/18.661502

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X., & Cao, W. (2018). Non-iterative approaches in training feed-forward neural networks and their applications. Soft Computing, 22(11), 3473–3476. https://doi.org/10.1007/S00500-018-3203-0

    Article  MATH  Google Scholar 

  6. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/J.NEUCOM.2005.12.126

    Article  Google Scholar 

  7. Pao, Y. H., Phillips, S. M., & Sobajic, D. J. (1992). Neural-net computing and the intelligent control of systems. International Journal of Control, 56(2), 263–289. https://doi.org/10.1080/00207179208934315

    Article  MathSciNet  MATH  Google Scholar 

  8. Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 6(2), 163–180. https://doi.org/10.1016/0925-2312(94)90053-1

    Article  Google Scholar 

  9. Pao, Y. H., Phillips, S. M., & Sobajic, D. J. (2007). Neural-net computing and the intelligent control of systems. International Journal of Control, 56(2), 263–289. https://doi.org/10.1080/00207179208934315

    Article  MathSciNet  MATH  Google Scholar 

  10. Schmidt, W. F., Kraaijveld, M. A., & Duin, R. P. W. (1992). Feed forward neural networks with random weights. Proceedings—International Conference on Pattern Recognition, 2, 1–4. https://doi.org/10.1109/ICPR.1992.201708

    Article  Google Scholar 

  11. Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights. Neurocomputing, 275, 278–287. https://doi.org/10.1016/J.NEUCOM.2017.08.040

    Article  Google Scholar 

  12. Liu, Y., Cao, W., Ming, Z., Wang, Q., Zhang, J., & Xu, Z. (2020). Ensemble neural networks with random weights for classification problems. PervasiveHealth Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3446132.3446147

    Article  Google Scholar 

  13. Tang, J., Deng, C., & Huang, G. B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 809–821. https://doi.org/10.1109/TNNLS.2015.2424995

    Article  MathSciNet  Google Scholar 

  14. Wang, Z., Luo, Y., Xin, J., Zhang, H., Qu, L., Wang, Z., & Wang, X. (2020). Computer-aided diagnosis based on extreme learning machine: A review. IEEE Access, 8, 141657–141673. https://doi.org/10.1109/ACCESS.2020.3012093

    Article  Google Scholar 

  15. Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2021). A review on extreme learning machine. Multimedia Tools and Applications, 2021, 1–50. https://doi.org/10.1007/S11042-021-11007-7

    Article  Google Scholar 

  16. Kuppili, V., Biswas, M., Sreekumar, A., Suri, H. S., Saba, L., Edla, D. R., & Suri, J. S. (2017). Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. Journal of Medical Systems. https://doi.org/10.1007/S10916-017-0797-1

    Article  Google Scholar 

  17. Pasyar, P., Mahmoudi, T., Kouzehkanan, S. Z. M., Ahmadian, A., Arabalibeik, H., Soltanian, N., & Radmard, A. R. (2021). Hybrid classification of diffuse liver diseases in ultrasound images using deep convolutional neural networks. Informatics in Medicine Unlocked. https://doi.org/10.1016/j.imu.2020.100496

    Article  Google Scholar 

  18. Wu, C. C., Lee, W. L., Chen, Y. C., & Hsieh, K. S. (2013). Evolution-based hierarchical feature fusion for ultrasonic liver tissue characterization. IEEE Journal of Biomedical and Health Informatics, 17(5), 967–976. https://doi.org/10.1109/JBHI.2013.2261819

    Article  Google Scholar 

  19. Gorunescu, F., Belciug, S., Gorunescu, M., & Badea, R. (2012). Intelligent decision-making for liver fibrosis stadialization based on tandem feature selection and evolutionary-driven neural network. Expert Systems with Applications, 39(17), 12824–12832. https://doi.org/10.1016/J.ESWA.2012.05.011

    Article  Google Scholar 

  20. Ömür, B., & Baki, S. (2010). Diagnosis of liver disease by using CMAC neural network approach. Expert Systems with Applications: An International Journal, 37(9), 6157–6164. https://doi.org/10.1016/J.ESWA.2010.02.112

    Article  Google Scholar 

  21. Rau, H. H., Hsu, C. Y., Lin, Y. A., Atique, S., Fuad, A., Wei, L. M., & Hsu, M. H. (2016). Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. Computer Methods and Programs in Biomedicine, 125, 58–65. https://doi.org/10.1016/J.CMPB.2015.11.009

    Article  Google Scholar 

  22. Di Bisceglie, A. M. (1988). Hepatocellular carcinoma. Annals of Internal Medicine, 108(3), 390. https://doi.org/10.7326/0003-4819-108-3-390

    Article  Google Scholar 

  23. Pisani, P., Maxwell, D., Bray, F., & Ferlay, J. (1999). Estimates of the worldwide mortality from 25 cancers in 1990. Journal of Cancer, 83, 18–29. https://doi.org/10.1002/(SICI)1097-0215(19990924)83:1

    Article  Google Scholar 

  24. Boctor, E. M., Taylor, R. H., Fichtinger, G., & Choti, M. A. (2003). Robotically assisted intraoperative ultrasound with application to ablative therapy of liver cancer. Medical Imaging 2003: Visualization Image-Guided Procedures, and Display, 5029, 281–291. https://doi.org/10.1117/12.480338

    Article  Google Scholar 

  25. Nakakura, E. K., & Choti, M. A. (2000). Management of hepatocellular carcinoma. Oncology (Williston Park, NY), 14(7), 1085–1098.

    Google Scholar 

  26. Lee, W. L., Chen, Y. C., & Hsieh, K. S. (2003). Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Transactions on Medical Imaging, 22(3), 382–392. https://doi.org/10.1109/TMI.2003.809593

    Article  Google Scholar 

  27. Ribeiro, R., & Sanches, J. (2009). Fatty liver characterization and classification by ultrasound. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5524 LNCS (pp. 354–361). https://doi.org/10.1007/978-3-642-02172-5_46

  28. Macdonald, G. (2008). Harrison’s internal medicine, 17th edition. - by A. S. Fauci, D. L. Kasper, D. L. Longo, E. Braunwald, S. L. Hauser, J. L. Jameson and J. Loscalzo. Internal Medicine Journal, 38(12), 932–932. https://doi.org/10.1111/J.1445-5994.2008.01837.X

    Article  Google Scholar 

  29. Lin, R. H. (2009). An intelligent model for liver disease diagnosis. Artificial Intelligence in Medicine, 47(1), 53–62. https://doi.org/10.1016/J.ARTMED.2009.05.005

    Article  Google Scholar 

  30. Lin, R. H., & Chuang, C. L. (2010). A hybrid diagnosis model for determining the types of the liver disease. Computers in Biology and Medicine, 40(7), 665–670. https://doi.org/10.1016/J.COMPBIOMED.2010.06.002

    Article  Google Scholar 

  31. Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/CANJCLIN.55.2.74

    Article  Google Scholar 

  32. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108. https://doi.org/10.3322/CAAC.21262

    Article  Google Scholar 

  33. Acharya, U. R., Fujita, H., Bhat, S., Raghavendra, U., Gudigar, A., Molinari, F., & Hoong Ng, K. (2016). Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Information Fusion, 29, 32–39. https://doi.org/10.1016/J.INFFUS.2015.09.006

    Article  Google Scholar 

  34. Acharya, U. R., Raghavendra, U., Fujita, H., Hagiwara, Y., Koh, J. E., Jen Hong, T., & Ng, K. H. (2016). Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Computers in Biology and Medicine, 79, 250–258. https://doi.org/10.1016/J.COMPBIOMED.2016.10.022

    Article  Google Scholar 

  35. Omagari, K., Kadokawa, Y., Masuda, J. I., Egawa, I., Sawa, T., Hazama, H., & Kohno, S. (2002). Fatty liver in non-alcoholic non-overweight Japanese adults: Incidence and clinical characteristics. Journal of Gastroenterology and Hepatology (Australia), 17(10), 1098–1105. https://doi.org/10.1046/J.1440-1746.2002.02846.X

    Article  Google Scholar 

  36. Chiappa, A., Bertani, E., Zbar, A. P., Foschi, D., Fazio, N., Zampino, M., & Biffi, R. (2016). Optimizing treatment of hepatic metastases from colorectal cancer: Resection or resection plus ablation? International Journal of Oncology, 48(3), 1280–1289. https://doi.org/10.3892/IJO.2016.3324

    Article  Google Scholar 

  37. Boyle, P., & Ferlay, J. (2005). Cancer incidence and mortality in Europe, 2004. Annals of oncology: Official journal of the European Society for Medical Oncology, 16(3), 481–488. https://doi.org/10.1093/ANNONC/MDI098

    Article  Google Scholar 

  38. Yue, W. W., Wang, S., Xu, H. X., Sun, L. P., Guo, L. H., Bo, X. W., & Liu, B. J. (2016). Parametric imaging with contrast-enhanced ultrasound for differentiating hepatocellular carcinoma from metastatic liver cancer. Clinical Hemorheology and Microcirculation, 64(2), 177–188. https://doi.org/10.3233/CH-162060

    Article  Google Scholar 

  39. Faust, O., Acharya, U. R., Meiburger, K. M., Molinari, F., Koh, J. E. W., Yeong, C. H., & Ng, K. H. (2018). Comparative assessment of texture features for the identification of cancer in ultrasound images: A review. Biocybernetics and Biomedical Engineering, 38(2), 275–296. https://doi.org/10.1016/J.BBE.2018.01.001

    Article  Google Scholar 

  40. Venkat, S. R., Mohan, P. P., & Gandhi, R. T. (2018). Colorectal liver metastasis: Overview of treatment paradigm highlighting the role of ablation. American Journal of Roentgenology, 210(4), 883–890. https://doi.org/10.2214/AJR.17.18574

    Article  Google Scholar 

  41. Liu, X., Ma, R. L., Zhao, J., Song, J. L., Zhang, J. Q., & Wang, S. H. (2021). A clinical decision support system for predicting cirrhosis stages via high frequency ultrasound images. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2021.114680

    Article  Google Scholar 

  42. Naghavi, M., Wang, H., Lozano, R., Davis, A., Liang, X., Zhou, M., & Temesgen, A. M. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 385(9963), 117–171. https://doi.org/10.1016/S0140-6736(14)61682-2/ATTACHMENT/5238BC3B-701B-4AF5-A9A1-6779A1791F9B/MMC4.PDF

    Article  Google Scholar 

  43. Wei, W., Haishan, X., Alpers, J., Rak, M., & Hansen, C. (2021). A deep learning approach for 2D ultrasound and 3D CT/MR image registration in liver tumor ablation. Computer Methods and Programs in Biomedicine, 20, 6. https://doi.org/10.1016/j.cmpb.2021.106117

    Article  Google Scholar 

  44. Roser, M., & Ritchie, H. (2015). Cancer. Our World data.

    Google Scholar 

  45. Xu, S. S. D., Chang, C. C., Su, C. T., & Phu, P. Q. (2019). Classification of liver diseases based on ultrasound image texture features. Applied Sciences (Switzerland). https://doi.org/10.3390/app9020342

    Article  Google Scholar 

  46. Qin, H., Wu, Y. Q., Lin, P., Gao, R. Z., Li, X., Wang, X. R., & Yang, H. (2021). Ultrasound image-based radiomics. Journal of Ultrasound in Medicine, 40(6), 1229–1244. https://doi.org/10.1002/jum.15506

    Article  Google Scholar 

  47. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., & Schmid, C. (2009). Evaluation of GIST descriptors for web-scale image search. In CIVR 2009—proceedings of the ACM international conference on image and video retrieval (pp. 140–147). https://doi.org/10.1145/1646396.1646421

  48. Acharya, U. R., Raghavendra, U., Fujita, H., Hagiwara, Y., Koh, J. E., Hong, T. J., & Ng, K. H. (2016). Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Computers in Biology and Medicine, 79, 250–258. https://doi.org/10.1016/J.COMPBIOMED.2016.10.022

    Article  Google Scholar 

  49. Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł, Paluszkiewicz, R., & Nowicki, A. (2018). Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of Computer Assisted Radiology and Surgery, 13(12), 1895–1903. https://doi.org/10.1007/S11548-018-1843-2

    Article  Google Scholar 

  50. Kyriacou, E., Pavlopoulos, S., Konnis, G., Koutsouris, D., Zoumpoulis, P., & Theotokas, I. (1997). Computer assisted characterization of diffused liver disease using image texture analysis techniques on B-scan images. IEEE Nuclear Science Symposium & Medical Imaging Conference, 2, 1479–1483. https://doi.org/10.1109/NSSMIC.1997.670599

    Article  Google Scholar 

  51. Badawi, A. M., Derbala, A. S., & Youssef, A. B. M. (1999). Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images. International Journal of Medical Informatics, 55(2), 135–147. https://doi.org/10.1016/S1386-5056(99)00010-6

    Article  Google Scholar 

  52. Pavlopoulos, S., Kyriacou, E. K., Koutsouris, D., Blekas, K., Stafylopatis, A. G., & Zoumpoulis, P. (2000). Fuzzy neural network-based texture analysis of ultrasonic images. IEEE Engineering in Medicine and Biology Magazine, 19(1), 39–47. https://doi.org/10.1109/51.816243

    Article  Google Scholar 

  53. Yoshida, H., Casalino, D. D., Keserci, B., Coskun, A., Ozturk, O., & Savranlar, A. (2003). Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images. Physics in Medicine and Biology, 48(22), 3735–3753. https://doi.org/10.1088/0031-9155/48/22/008

    Article  Google Scholar 

  54. Zaid, A. S. A., Fakhr, M. W., & Mohamed, A. F. A. (2006). Automatic diagnosis of liver diseases from ultrasound images. In 2006 International conference on computer engineering and systems, ICCES’06 (pp. 313–319). https://doi.org/10.1109/ICCES.2006.320467

  55. Wan, J., & Zhou, S. (2010). Features extraction based on wavelet packet transform for B-mode ultrasound liver images. In Proceedings—2010 3rd international congress on image and signal processing, CISP 2010 (Vol. 2, pp. 949–955). https://doi.org/10.1109/CISP.2010.5646917

  56. Xian, G. M. (2010). An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM. Expert Systems with Applications, 37(10), 6737–6741. https://doi.org/10.1016/J.ESWA.2010.02.067

    Article  Google Scholar 

  57. Virmani, J., Kumar, V., Kalra, N., & Khandelwal, N. (2012). SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging, 26(3), 530–543. https://doi.org/10.1007/S10278-012-9537-8

    Article  Google Scholar 

  58. Acharya, U. R., Sree, S. V., Ribeiro, R., Krishnamurthi, G., Marinho, R. T., Sanches, J., & Suri, J. S. (2012). Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm. Medical Physics, 39(7), 4255–4264. https://doi.org/10.1118/1.4725759

    Article  Google Scholar 

  59. Peng, Y., Lin, P., Wu, L., Wan, D., Zhao, Y., Liang, L., & Yang, H. (2020). Ultrasound-based radiomics analysis for preoperatively predicting different histopathological subtypes of primary liver cancer. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.01646

    Article  Google Scholar 

  60. Constantinescu, E. C., Udriștoiu, A. L., Udriștoiu, ȘC., Iacob, A. V., Gruionu, L. G., Gruionu, G., & Săftoiu, A. (2021). Transfer learning with pre-trained deep convolutional neural networks for the automatic assessment of liver steatosis in ultrasound images. Medical Ultrasonography, 23(2), 135–139. https://doi.org/10.11152/mu-2746

    Article  Google Scholar 

  61. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feed-forward neural networks. IEEE International Conference on Neural Networks—Conference Proceedings, 2, 985–990. https://doi.org/10.1109/IJCNN.2004.1380068

    Article  Google Scholar 

  62. Jiang, J., Trundle, P., & Ren, J. (2010). Medical image analysis with artificial neural networks. Computerized Medical Imaging and Graphics : The Official Journal of the Computerized Medical Imaging Society, 34(8), 617–631. https://doi.org/10.1016/J.COMPMEDIMAG.2010.07.003

    Article  Google Scholar 

  63. Zhang, L., & Suganthan, P. N. (2016). A comprehensive evaluation of random vector functional link networks. Information Sciences, 367–368, 1094–1105. https://doi.org/10.1016/J.INS.2015.09.025

    Article  Google Scholar 

  64. Zhang, P. B., & Yang, Z. X. (2020). A new learning paradigm for random vector functional-link network: RVFL+. Neural Networks, 122, 94–105. https://doi.org/10.1016/J.NEUNET.2019.09.039

    Article  Google Scholar 

  65. Cao, W., Yang, P., Ming, Z., Cai, S., & Zhang, J. (2020). An improved fuzziness based random vector functional link network for liver disease detection. In Proceedings—2020 IEEE 6th international conference on big data security on cloud, BigDataSecurity 2020, 2020 IEEE international conference on high performance and smart computing, HPSC 2020 and 2020 IEEE international conference on intelligent data and security, IDS 2020 (pp. 42–48). https://doi.org/10.1109/BIGDATASECURITY-HPSC-IDS49724.2020.00019

  66. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). snopes.com: Two-striped telamonia spider. Journal of Artificial Intelligence Research, 16, 321–357.

    Article  Google Scholar 

  67. Kumar, M., Mishra, S. K., Joseph, J., Jangir, S. K., & Goyal, D. (2021). Adaptive comprehensive particle swarm optimisation-based functional-link neural network filtre model for de-noising ultrasound images. IET Image Processing, 15(6), 1232–1246. https://doi.org/10.1049/IPR2.12100

    Article  Google Scholar 

  68. Katuwal, R., & Suganthan, P. N. (2019). Stacked autoencoder based deep random vector functional link neural network for classification. Applied Soft Computing Journal. https://doi.org/10.1016/j.asoc.2019.105854

    Article  Google Scholar 

  69. Nayak, D. R., Dash, R., Majhi, B., Pachori, R. B., & Zhang, Y. (2020). A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer. Biomedical Signal Processing and Control, 58, 101860. https://doi.org/10.1016/J.BSPC.2020.101860

    Article  Google Scholar 

  70. Cao, F., Ye, H., & Wang, D. (2015). A probabilistic learning algorithm for robust modeling using neural networks with random weights. Information Sciences, 313, 62–78. https://doi.org/10.1016/J.INS.2015.03.039

    Article  MATH  Google Scholar 

  71. Cao, F., Tan, Y., & Cai, M. (2014). Sparse algorithms of random weight networks and applications. Expert Systems with Applications, 41(5), 2457–2462. https://doi.org/10.1016/J.ESWA.2013.09.045

    Article  Google Scholar 

  72. Patrikar, A. M. (2020). Efficient design of neural networks with random weights. Retrieved from https://arxiv.org/abs/2008.10425v1

  73. Huang, W., Li, N., Lin, Z., Huang, G. B., Zong, W., Zhou, J., & Duan, Y. (2013). Liver tumor detection and segmentation using kernel-based extreme learning machine. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS (pp. 3662–3665). https://doi.org/10.1109/EMBC.2013.6610337

  74. Kuppili, V., Biswas, M., Sreekumar, A., Suri, H. S., Saba, L., Edla, D. R., & Suri, J. S. (2017). Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization. Journal of Medical Systems, 41(10), 1–20. https://doi.org/10.1007/S10916-017-0797-1

    Article  Google Scholar 

  75. Li, S., Jiang, H., & Pang, W. (2017). Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Computers in Biology and Medicine, 84, 156–167. https://doi.org/10.1016/j.compbiomed.2017.03.017

    Article  Google Scholar 

  76. Cao, F., Liu, B., & Sun Park, D. (2013). Image classification based on effective extreme learning machine. Neurocomputing, 102, 90–97. https://doi.org/10.1016/j.neucom.2012.02.042

    Article  Google Scholar 

  77. Savitha, R., Suresh, S., & Sundararajan, N. (2012). Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Information Sciences, 187(1), 277–290. https://doi.org/10.1016/j.ins.2011.11.003

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have  received no funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahananda D. Malkauthekar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

It’s ethical. No experiments are done on humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkauthekar, M.D., Gulve, A.K., Deshmukh, R.R. et al. Liver Cancer Classification Using Single Pass Neural Networks Based on Ultrasound Images: A Review. Wireless Pers Commun 130, 241–268 (2023). https://doi.org/10.1007/s11277-023-10283-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10283-w

Keywords

Navigation