Skip to main content

Advertisement

Log in

Radiomics Based Diagnosis with Medical Imaging: A Comprehensive Study

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Radiomics is a domain of biomedical and bioengineering research that analyzes large-scale radiological images associated with biology. Radiomics is dependent on feature extraction and is one of the extensions in the applications of Computer aided diagnosis (CAD). The number of features used in diagnosis are comparatively more in radiomics, making it one of the best approaches to be used in image analysis. The features that are extracted can be used in multiple modalities making the models more feasible and increasing their overall utility. Thus, this paper analyzes and showcases recent work being done on radiomics that is emerging rapidly in the field of medical applications. This paper mainly focused on oncology and presents a detailed literature review of radiomics. Further, various gaps and challenges that this field of radiomics faces while emerging as one of the most used approaches for future development are also presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4–5), 198–211.

    Article  Google Scholar 

  2. Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images are more than pictures, they are data. Radiology, 278(2), 563–577.

    Article  Google Scholar 

  3. Yip, S. S., & Aerts, H. J. (2016). Applications and limitations of radiomics. Physics in Medicine & Biology, 61(13), R150.

    Article  Google Scholar 

  4. Nam, D., Barrack, R. L., & Potter, H. G. (2014). What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clinical Orthopaedics and Related Research, 472(12), 3665–73.

    Article  Google Scholar 

  5. Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G., Granton, P., Zegers, C. M., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. (2012). Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441–446.

    Article  Google Scholar 

  6. Arber, N. J., Wu, Y., Zou, L., Belani, P., & Singer, E. A. (2015). Challenges in RCC imaging: renal insufficiency, post-operative surveillance, and the role of radiomics. Kidney Cancer Journal: Official Journal of the Kidney Cancer Association., 13(4), 84.

    Google Scholar 

  7. Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A. G., & Bellomi, M. (2018). Radiomics: The facts and the challenges of image analysis. European Radiology Experimental, 2(1), 1–8.

    Article  Google Scholar 

  8. Grossmann, P., Stringfield, O., El-Hachem, N., Bui, M. M., Velazquez, E. R., Parmar, C., Leijenaar, R. T., Haibe-Kains, B., Lambin, P., Gillies, R. J., & Aerts, H. J. (2017). Defining the biological basis of radiomic phenotypes in lung cancer. eLife, 6, e23421.

    Article  Google Scholar 

  9. Shaikh, F., Franc, B., Allen, E., Sala, E., Awan, O., Hendrata, K., Halabi, S., Mohiuddin, S., Malik, S., Hadley, D., & Shrestha, R. (2018). Translational radiomics: Defining the strategy pipeline and considerations for application—Part 1: From methodology to clinical implementation. Journal of the American College of Radiology, 15(3), 538–542.

    Article  Google Scholar 

  10. Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J., Andrearczyk, V., Apte, A., Ashrafinia, S., Bakas, S., Beukinga, R. J., Boellaard, R., & Bogowicz, M. (2020). The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology, 295(2), 328–338.

    Article  Google Scholar 

  11. Ergen, B., & Baykara, M. (2014). Texture based feature extraction methods for content based medical image retrieval systems. Bio-Medical Materials And Engineering, 24(6), 3055–3062.

    Article  Google Scholar 

  12. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  13. Balagurunathan, Y., Kumar, V., Gu, Y., Kim, J., Wang, H., Liu, Y., Goldgof, D. B., Hall, L. O., Korn, R., Zhao, B., & Schwartz, L. H. (2014). Test–retest reproducibility analysis of lung CT image features. Journal of Digital Imaging, 27(6), 805–823.

    Article  Google Scholar 

  14. Galloway, M. M. (1975). Texture classification using gray level run length. Computer Graphics and Image Processing, 4(2), 172–179.

    Article  Google Scholar 

  15. Nie, K., Al-Hallaq, H., Li, X. A., Benedict, S. H., Sohn, J. W., Moran, J. M., Fan, Y., Huang, M., Knopp, M. V., Michalski, J. M., & Monroe, J. (2019). NCTN assessment on current applications of radiomics in oncology. International Journal of Radiation Oncology* Biology* Physics, 104(2), 302–15.

    Article  Google Scholar 

  16. Zhao, B., Tan, Y., Tsai, W. Y., Qi, J., Xie, C., Lu, L., & Schwartz, L. H. (2016). Reproducibility of radiomics for deciphering tumor phenotype with imaging. Scientific Reports, 6(1), 1–7.

    Google Scholar 

  17. Parmar, C., Velazquez, E. R., Leijenaar, R., Jermoumi, M., Carvalho, S., Mak, R. H., Mitra, S., Shankar, B. U., Kikinis, R., Haibe-Kains, B., & Lambin, P. (2014). Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE, 9(7), e102107.

    Article  Google Scholar 

  18. Leijenaar, R. T., Nalbantov, G., Carvalho, S., Van Elmpt, W. J., Troost, E. G., Boellaard, R., Aerts, H. J., Gillies, R. J., & Lambin, P. (2015). The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Scientific Reports, 5(1), 1.

    Article  Google Scholar 

  19. Aerts, H. J., Grossmann, P., Tan, Y., Oxnard, G. R., Rizvi, N., Schwartz, L. H., & Zhao, B. (2016). Defining a radiomic response phenotype: A pilot study using targeted therapy in NSCLC. Scientific Reports, 6(1), 1.

    Article  Google Scholar 

  20. Lao, J., Chen, Y., Li, Z. C., Li, Q., Zhang, J., Liu, J., & Zhai, G. (2017). A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Scientific Reports, 7(1), 1–8.

    Article  Google Scholar 

  21. Parmar, C., Leijenaar, R. T., Grossmann, P., Velazquez, E. R., Bussink, J., Rietveld, D., Rietbergen, M. M., Haibe-Kains, B., Lambin, P., & Aerts, H. J. (2015). Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Scientific Reports, 5(1), 1.

    Article  Google Scholar 

  22. Coroller, T. P., Grossmann, P., Hou, Y., Velazquez, E. R., Leijenaar, R. T., Hermann, G., Lambin, P., Haibe-Kains, B., Mak, R. H., & Aerts, H. J. (2015). CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiotherapy and Oncology, 114(3), 345–350.

    Article  Google Scholar 

  23. Limkin, E. J., Sun, R., Dercle, L., Zacharaki, E. I., Robert, C., Reuzé, S., Schernberg, A., Paragios, N., Deutsch, E., & Ferté, C. (2017). Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Annals of Oncology, 28(6), 1191–1206.

    Article  Google Scholar 

  24. Huang, Y., Liu, Z., He, L., Chen, X., Pan, D., Ma, Z., Liang, C., Tian, J., & Liang, C. (2016). Radiomics signature: A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non—small cell lung cancer. Radiology, 281(3), 947–957.

    Article  Google Scholar 

  25. Giesel, F., Schneider, F., Kratochwil, C., Rath, D., Holland-Letz, T., Moltz, J., Kauczor, H.U., Schwartz, L., Haberkorn, U., Flechsig, P. (2016) CT radiomic analysis using lymph-node-density profile in correlation to SUV-value for PET/CT based N-staging. Journal of Nuclear Medicine jnumed-116.

  26. McNitt-Gray, M. F., Hart, E. M., Wyckoff, N., Sayre, J. W., Goldin, J. G., & Aberle, D. R. (1999). A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results. Medical Physics, 26(6), 880–888.

    Article  Google Scholar 

  27. Ganeshan, B., Abaleke, S., Young, R. C., Chatwin, C. R., & Miles, K. A. (2010). Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumor glucose metabolism and stage. Cancer Imaging, 10(1), 137.

    Article  Google Scholar 

  28. Ganeshan, B., Goh, V., Mandeville, H. C., Ng, Q. S., Hoskin, P. J., & Miles, K. A. (2013). Non–small cell lung cancer: Histopathologic correlates for texture parameters at CT. Radiology, 266(1), 326–336.

    Article  Google Scholar 

  29. Karlo, C. A., Di Paolo, P. L., Chaim, J., Hakimi, A. A., Ostrovnaya, I., Russo, P., Hricak, H., Motzer, R., Hsieh, J. J., & Akin, O. (2014). Radiogenomics of clear cell renal cell carcinoma: Associations between CT imaging features and mutations. Radiology, 270(2), 464–471.

    Article  Google Scholar 

  30. Traverso, A., Wee, L., Dekker, A., & Gillies, R. (2018). Repeatability and reproducibility of radiomic features: a systematic review. International Journal of Radiation Oncology* Biology* Physics., 102(4), 1143–58.

    Article  Google Scholar 

  31. Panth, K. M., Leijenaar, R. T., Carvalho, S., Lieuwes, N. G., Yaromina, A., Dubois, L., & Lambin, P. (2015). Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiotherapy and Oncology, 116(3), 462–466.

    Article  Google Scholar 

  32. Ypsilantis, P. P., Siddique, M., Sohn, H. M., Davies, A., Cook, G., Goh, V., & Montana, G. (2015). Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS ONE, 10(9), e0137036.

    Article  Google Scholar 

  33. Dhingra, V. K., Mahajan, A., & Basu, S. (2015). Emerging clinical applications of PET based molecular imaging in oncology: The promising future potential for evolving personalized cancer care. The Indian Journal of Radiology & Imaging, 25(4), 332.

    Article  Google Scholar 

  34. Capobianco, E., & Dominietto, M. (2020). From medical imaging to radiomics: Role of data science for advancing precision health. Journal of Personalized Medicine, 10(1), 15.

    Article  Google Scholar 

  35. Lu, L., Lv, W., Jiang, J., Ma, J., Feng, Q., Rahmim, A., & Chen, W. (2016). Robustness of radiomic features in [11 C] choline and [18 F] FDG PET/CT imaging of nasopharyngeal carcinoma: Impact of segmentation and discretization. Molecular Imaging and Biology, 18(6), 935–945.

    Article  Google Scholar 

  36. El Naqa, I. (2014). The role of quantitative PET in predicting cancer treatment outcomes. Clinical and Translational Imaging, 2(4), 305–320.

    Article  Google Scholar 

  37. Grigsby, P. W., Siegel, B. A., Dehdashti, F., Rader, J., & Zoberi, I. (2004). Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: Response and outcome. Journal of Clinical Oncology., 22(11), 2167–2171.

    Article  Google Scholar 

  38. Yoon, H.J., Sohn, I., Cho, J.H., Lee, H.Y., Kim, J.H., Choi, Y.L., Kim, H., Lee, G., Lee, K.S., Kim, J. (2015) Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine 94 (41).

  39. Berghmans, T., Dusart, M., Paesmans, M., Hossein-Foucher, C., Buvat, I., Castaigne, C., Scherpereel, A., Mascaux, C., Moreau, M., Roelandts, M., & Alard, S. (2008). Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): A systematic review and meta-analysis (MA) by the European lung cancer working party for the IASLC lung cancer staging project. Journal of Thoracic Oncology, 3(1), 6–12.

    Article  Google Scholar 

  40. Hatt, M., Tixier, F., Pierce, L., Kinahan, P. E., Le Rest, C. C., & Visvikis, D. (2017). Characterization of PET/CT images using texture analysis: The past, the present any future? European Journal of Nuclear Medicine and Molecular Imaging, 44(1), 151–165.

    Article  Google Scholar 

  41. Scrivener, M., de Jong, E. E., van Timmeren, J. E., Pieters, T., Ghaye, B., & Geets, X. (2016). Radiomics applied to lung cancer: A review. Transl Cancer Res., 5(4), 398–409.

    Article  Google Scholar 

  42. Hatt, M., Parmar, C., Qi, J., & El Naqa, I. (2019). Machine (deep) learning methods for image processing and radiomics. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), 104–108.

    Article  Google Scholar 

  43. Cameron, A., Khalvati, F., Haider, M. A., & Wong, A. (2015). MAPS: A quantitative radiomics approach for prostate cancer detection. IEEE Transactions on Biomedical Engineering., 63(6), 1145–1156.

    Article  Google Scholar 

  44. Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J., Dekker, A., Fenstermacher, D., & Goldgof, D. B. (2012). Radiomics: The process and the challenges. Magnetic Resonance Imaging, 30(9), 1234–1248.

    Article  Google Scholar 

  45. Li, H., Zhu, Y., Burnside, E. S., Huang, E., Drukker, K., Hoadley, K. A., Fan, C., Conzen, S. D., Zuley, M., Net, J. M., & Sutton, E. (2016). Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer, 2(1), 1.

    Article  Google Scholar 

  46. Parmar, C., Grossmann, P., Bussink, J., Lambin, P., & Aerts, H. J. (2015). Machine learning methods for quantitative radiomic biomarkers. Scientific Reports, 5(1), 1–1.

    Article  Google Scholar 

  47. Antunes, J., Viswanath, S., Rusu, M., Valls, L., Hoimes, C., Avril, N., & Madabhushi, A. (2016). Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: A proof-of-concept study. Translational Oncology, 9(2), 155–162.

    Article  Google Scholar 

  48. Barucci, A., Baccini, M., Carpi, R., Giannetti, A., Olmastroni, M., Pini, R., Pujol, S., Ratto, F., Zatelli, G., Esposito, M. (2017) Prostate cancer radiomics using multiparametric MR imaging. Technical, Scientific and Research Reports (TSRR) 9.

  49. Reuzé, S., Orlhac, F., Chargari, C., Nioche, C., Limkin, E., Riet, F., Escande, A., Haie-Meder, C., Dercle, L., Gouy, S., & Buvat, I. (2017). Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget, 8(26), 43169.

    Article  Google Scholar 

  50. Tanadini-Lang, S., Bogowicz, M., Veit-Haibach, P., Huellner, M., Pauli, C., Shukla, V., Guckenberger, M., & Riesterer, O. (2018). Exploratory radiomics in computed tomography perfusion of prostate cancer. Anticancer Research, 38(2), 685–690.

    Google Scholar 

  51. Theek, B., Opacic, T., Magnuska, Z., Lammers, T., & Kiessling, F. (2018). Radiomic analysis of contrast-enhanced ultrasound data. Scientific Reports, 8(1), 1–9.

    Article  Google Scholar 

  52. Khalvati, F., Zhang, J., Chung, A. G., Shafiee, M. J., Wong, A., & Haider, M. A. (2018). MPCaD: A multi-scale radiomics-driven framework for automated prostate cancer localization and detection. BMC Medical Imaging, 18(1), 1–4.

    Article  Google Scholar 

  53. Chiang, G. C., Kovanlikaya, I., Choi, C., Ramakrishna, R., Magge, R., & Shungu, D. C. (2018). Magnetic resonance spectroscopy, positron emission tomography and radiogenomics: Relevance to glioma. Frontiers in Neurology, 5(9), 33.

    Article  Google Scholar 

  54. Toivonen, J., Montoya Perez, I., Movahedi, P., Merisaari, H., Pesola, M., Taimen, P., Boström, P. J., Pohjankukka, J., Kiviniemi, A., Pahikkala, T., & Aronen, H. J. (2019). Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization. PLoS ONE, 14(7), e0217702.

    Article  Google Scholar 

  55. Kickingereder, P., Burth, S., Wick, A., Götz, M., Eidel, O., Schlemmer, H. P., Maier-Hein, K. H., Wick, W., Bendszus, M., Radbruch, A., & Bonekamp, D. (2016). Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology, 280(3), 880–889.

    Article  Google Scholar 

  56. Zhang, L., Fried, D. V., Fave, X. J., Hunter, L. A., Yang, J., & Court, L. E. (2015). IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Medical physics, 42(3), 1341–1353.

    Article  Google Scholar 

  57. Fang, Y. H., Lin, C. Y., Shih, M. J., Wang, H. M., Ho, T. Y., Liao, C. T., & Yen, T. C. (2014). Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. BioMed Research International, 2014, 1.

    Google Scholar 

  58. Szczypiński, P. M., Strzelecki, M., Materka, A., & Klepaczko, A. (2009). MaZda—a software package for image texture analysis. Computer Methods and Programs in Biomedicine, 94(1), 66–76.

    Article  Google Scholar 

  59. El Naqa, I., Grigsby, P. W., Apte, A., Kidd, E., Donnelly, E., Khullar, D., Chaudhari, S., Yang, D., Schmitt, M., Laforest, R., & Thorstad, W. L. (2009). Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognition, 42(6), 1162–1171.

    Article  Google Scholar 

  60. Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine and Biology, 60(14), 5471.

    Article  Google Scholar 

  61. Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., & Hoebers, F. (2014). Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 1–9.

    Google Scholar 

  62. Coroller, T. P., Agrawal, V., Narayan, V., Hou, Y., Grossmann, P., Lee, S. W., Mak, R. H., & Aerts, H. J. (2016). Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiotherapy and Oncology, 119(3), 480–486.

    Article  Google Scholar 

  63. Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., & Baessler, B. (2020). Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Into Imaging, 11(1), 1–6.

    Google Scholar 

  64. Scapicchio, C., Gabelloni, M., Barucci, A., Cioni, D., Saba, L., & Neri, E. (2021). A deep look into radiomics. La Radiologia Medica, 126(10), 1296–1311.

    Article  Google Scholar 

  65. Reginelli, A., Nardone, V., Giacobbe, G., Belfiore, M. P., Grassi, R., Schettino, F., Del Canto, M., Grassi, R., & Cappabianca, S. (2021). Radiomics as a new frontier of imaging for cancer prognosis: A narrative review. Diagnostics, 11(10), 1796.

    Article  Google Scholar 

  66. Feng, Q., Liang, J., Wang, L., Ge, X., Ding, Z., & Wu, H. (2022). A diagnosis model in nasopharyngeal carcinoma based on PET/MRI radiomics and semiquantitative parameters. BMC Medical Imaging, 22(1), 1–9.

    Article  Google Scholar 

  67. Chung, A. G., Khalvati, F., Shafiee, M. J., Haider, M. A., & Wong, A. (2015). Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. IEEE Access, 3, 2531–2541.

    Article  Google Scholar 

  68. Ma, J., Wang, Q., Ren, Y., Hu, H., Zhao, J. (2016) Automatic lung nodule classification with radiomics approach. In Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations (Vol. 9789, p. 978906). International Society for Optics and Photonics.

  69. Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., Van Timmeren, J., Sanduleanu, S., Larue, R. T., Even, A. J., Jochems, A., & van Wijk, Y. (2017). Radiomics: The bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12), 749–762.

    Article  Google Scholar 

  70. Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-Robin, J. C., Pieper, S., & Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Research, 77(21), e104–e107.

    Article  Google Scholar 

  71. Leger, S., Zwanenburg, A., Pilz, K., Lohaus, F., Linge, A., Zöphel, K., Kotzerke, J., Schreiber, A., Tinhofer, I., Budach, V., & Sak, A. (2017). A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Scientific Reports, 7(1), 1–1.

    Article  Google Scholar 

  72. Buizza, G. (2017) Classifying patients' response to tumor treatment from PET/CT data: A machine learning approach.

  73. Wang, J., Wu, C. J., Bao, M. L., Zhang, J., Wang, X. N., & Zhang, Y. D. (2017). Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. European Radiology, 27(10), 4082–4090.

    Article  Google Scholar 

  74. Ginsburg, S. B., Algohary, A., Pahwa, S., Gulani, V., Ponsky, L., Aronen, H. J., Boström, P. J., Böhm, M., Haynes, A. M., Brenner, P., & Delprado, W. (2017). Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study. Journal of Magnetic Resonance Imaging., 46(1), 184–193.

    Article  Google Scholar 

  75. Aerts, H. J. (2018). Data science in radiology: A path forward. Clinical Cancer Research, 24(3), 532–534.

    Article  Google Scholar 

  76. Algohary, A., Viswanath, S., Shiradkar, R., Ghose, S., Pahwa, S., Moses, D., Jambor, I., Shnier, R., Böhm, M., Haynes, A. M., & Brenner, P. (2018). Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. Journal of Magnetic Resonance Imaging., 48(3), 818–828.

    Article  Google Scholar 

  77. Bonekamp, D., Kohl, S., Wiesenfarth, M., Schelb, P., Radtke, J. P., Götz, M., Kickingereder, P., Yaqubi, K., Hitthaler, B., Gählert, N., & Kuder, T. A. (2018). Radiomic machine learning for characterization of prostate lesions with MRI: Comparison to ADC values. Radiology, 289(1), 128–137.

    Article  Google Scholar 

  78. Choyke, P. L. (2018). Quantitative MRI or machine learning for prostate MRI: Which should you use? Radiology, 289, 138.

    Article  Google Scholar 

  79. Peeken, J. C., Bernhofer, M., Wiestler, B., Goldberg, T., Cremers, D., Rost, B., Wilkens, J. J., Combs, S. E., & Nüsslin, F. (2018). Radiomics in radiooncology–challenging the medical physicist. Physica Medica, 48, 27–36.

    Article  Google Scholar 

  80. Morin, O., Vallières, M., Jochems, A., Woodruff, H. C., Valdes, G., Braunstein, S. E., Wildberger, J. E., Villanueva-Meyer, J. E., Kearney, V., Yom, S. S., & Solberg, T. D. (2018). A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. International Journal of Radiation Oncology* Biology* Physics, 102(4), 1074–82.

    Article  Google Scholar 

  81. Banerjee, S., Mitra, S., Masulli, F., Rovetta, S. (2019) Deep radiomics for brain tumor detection and classification from multi-sequence MRI. arXiv preprint arXiv:1903.09240..

  82. Chen, T., Li, M., Gu, Y., Zhang, Y., Yang, S., Wei, C., Wu, J., Li, X., Zhao, W., & Shen, J. (2019). Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2. Journal of Magnetic Resonance Imaging, 49(3), 875–84.

    Article  Google Scholar 

  83. Varghese, B., Chen, F., Hwang, D., Palmer, S.L., De Castro Abreu, A.L., Ukimura, O., Aron, M., Aron, M., Gill, I., Duddalwar, V., Pandey, G. (2020) Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. In: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (pp. 1–10).

  84. Afshar, P., Mohammadi, A., Plataniotis, K. N., Oikonomou, A., & Benali, H. (2019). From handcrafted to deep-learning-based cancer radiomics: Challenges and opportunities. IEEE Signal Processing Magazine, 36(4), 132–160.

    Article  Google Scholar 

  85. Dreyer, K. J., & Geis, J. R. (2017). When machines think: Radiology’s next frontier. Radiology, 285(3), 713–718.

    Article  Google Scholar 

  86. Sanduleanu, S., Woodruff, H. C., De Jong, E. E., Van Timmeren, J. E., Jochems, A., Dubois, L., & Lambin, P. (2018). Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiotherapy and Oncology, 127(3), 349–360.

    Article  Google Scholar 

  87. Wu, J., Tha, K. K., Xing, L., & Li, R. (2018). Radiomics and radiogenomics for precision radiotherapy. Journal of Radiation Research., 59(Suppl_1), i25-31.

    Article  Google Scholar 

  88. Robinson, K., Li, H., Lan, L., Schacht, D., & Giger, M. (2019). Radiomics robustness assessment and classification evaluation: A two-stage method demonstrated on multivendor FFDM. Medical physics, 46(5), 2145–2156.

    Article  Google Scholar 

  89. Rogers, W., Thulasi Seetha, S., Refaee, T. A., Lieverse, R. I., Granzier, R. W., Ibrahim, A., Keek, S. A., Sanduleanu, S., Primakov, S. P., Beuque, M. P., & Marcus, D. (2020). Radiomics: From qualitative to quantitative imaging. The British Journal of Radiology, 93(1108), 20190948.

    Article  Google Scholar 

  90. Hong, J. H., Jung, J. Y., Jo, A., Nam, Y., Pak, S., Lee, S. Y., Park, H., Lee, S. E., & Kim, S. (2021). Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology, 30, 203783.

    Google Scholar 

Download references

Funding

Funding is provided by Ministry of Human Resource Development (MHRD), Govt. of India under the Project “Design Innovation Centre (DIC) sub-theme Medical Devices and Restorative Technologies” with grant number 17-11/2015-PN-1.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed in the manuscript.

Corresponding author

Correspondence to Mamta Juneja.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S.K., Thakur, N. & Juneja, M. Radiomics Based Diagnosis with Medical Imaging: A Comprehensive Study. Wireless Pers Commun 130, 481–514 (2023). https://doi.org/10.1007/s11277-023-10295-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10295-6

Keywords

Navigation