Skip to main content
Log in

An Adaptive Optimized Schizophrenia Electroencephalogram Disease Prediction Framework

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) signal analysis has become an interesting and required area in the medical industry to analyze brain function for different diseases. But, the EEG signal’s noise features might degrade the signal prediction's exactness score. So, the presented article aims to develop a novel EEG signal analysis system named a novel Firefly-based Deep Belief Signal Specification (FbDBSS). In addition, the disease signal considered in this research work is Schizophrenia (SZ) signal. Initially, the SZ signal with a normal EEG signal is trained to the system, and preprocessing function is performed. Then the filtered signal is entered into the classification layer for the feature extraction and signal analysis function. Furthermore, the proposed design is executed in the python environment, and the robustness score has been measured in terms of accuracy, sensitivity, and error rate. The chief parameter of the proposed FbDBSS design is compared with other models and has gained the finest 3% of improved signal analysis accuracy and sensitivity score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

  1. Singh, K., & Malhotra, J. (2022). Predicting epileptic seizures from EEG spectral band features using convolutional neural network. Wireless Personal Communications, 125, 2667–2684. https://doi.org/10.1007/s11277-022-09678-y

    Article  Google Scholar 

  2. Singh, G., Kaur, M., & Singh, B. (2021). Detection of epileptic seizure eeg signal using multiscale entropies and complete ensemble empirical mode decomposition. Wireless Personal Communications, 116, 845–864. https://doi.org/10.1007/s11277-020-07742-z

    Article  Google Scholar 

  3. Tarle, B., & Jena, S. (2021). Ant lion optimization based medical data classification using modified neuro fuzzy classifier. Wireless Personal Communications, 117, 1223–1242. https://doi.org/10.1007/s11277-020-07919-6

    Article  Google Scholar 

  4. Shoeibi, A., Ghassemi, N., Khodatars, M., Moridian, P., Alizadehsani, R., Zare, A., Khosravi, A., Subasi, A., Acharya, U. R., & Gorriz, J. M. (2022). Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomedical Signal Processing and Control, 73, 103417. https://doi.org/10.1016/j.bspc.2021.103417

    Article  Google Scholar 

  5. Löffler, M. C., Betz, M. J., Blondin, D. P., Augustin, R., Sharma, A. K., Tseng, Y. H., Scheele, C., Zimdahl, H., Mark, M., Hennige, A. M., Wolfrum, C., Langhans, W., Hamilton, B. S., & Neubauer, H. (2021). Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Molecular Metabolism, 51, 101237. https://doi.org/10.1016/j.molmet.2021.101237

    Article  Google Scholar 

  6. Albaqami, H., Hassan, G. M., Subasi, A., & Datta, A. (2021). Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomedical Signal Processing and Control, 70, 102957. https://doi.org/10.1016/j.bspc.2021.102957

    Article  Google Scholar 

  7. Roy, A. M. (2022). An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomedical Signal Processing and Control, 74, 103496. https://doi.org/10.1016/j.bspc.2022.103496

    Article  Google Scholar 

  8. Bukach, C. M., Bukach, N., Reed, C. L., & Couperus, J. W. (2021). Open science as a path to education of new psychophysiologists. International Journal of Psychophysiology, 165, 76–83. https://doi.org/10.1016/j.ijpsycho.2021.04.001

    Article  Google Scholar 

  9. Akbari, H., & Sadiq, M. T. (2021). Detection of focal and non-focal EEG signals using nonlinear features derived from empirical wavelet transform rhythms. Physical and Engineering Sciences in Medicine, 44(1), 157–171. https://doi.org/10.1007/s13246-020-00963-3

    Article  Google Scholar 

  10. Safayari, A., & Bolhasani, H. (2021). Depression diagnosis by deep learning using EEG signals: A systematic review. Medicine in Novel Technology and Devices, 12, 100102. https://doi.org/10.1016/j.medntd.2021.100102

    Article  Google Scholar 

  11. Finucane, B. M., Ledbetter, D. H., & Vorstman, J. A. (2021). Diagnostic genetic testing for neurodevelopmental psychiatric disorders: Closing the gap between recommendation and clinical implementation. Current Opinion in Genetics and Development, 68, 1–8. https://doi.org/10.1016/j.gde.2020.12.016

    Article  Google Scholar 

  12. Idowu, O. P., Ilesanmi, A. E., Li, X., Samuel, O. W., Fang, P., & Li, G. (2021). An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees. Computer Methods and Programs in Biomedicine, 206, 106121. https://doi.org/10.1016/j.cmpb.2021.106121

    Article  Google Scholar 

  13. Lucieri, A., Bajwa, M. N., Braun, S. A., Malik, M. I., Dengel, A., & Ahmed, S. (2022). ExAID: A multimodal explanation framework for computer-aided diagnosis of skin lesions. Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2022.106620

    Article  Google Scholar 

  14. Radhakrishnan, T., Karhade, J., Ghosh, S. K., Muduli, P. R., Tripathy, R. K., & Acharya, U. R. (2021). AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals. Computers in Biology and Medicine, 137, 104783. https://doi.org/10.1016/j.compbiomed.2021.104783

    Article  Google Scholar 

  15. Das, K., & Pachori, R. B. (2021). Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomedical Signal Processing and Control, 67, 102525. https://doi.org/10.1016/j.bspc.2021.102525

    Article  Google Scholar 

  16. Gupta, V., & Pachori, R. B. (2021). FBDM based time-frequency representation for sleep stages classification using EEG signals. Biomedical Signal Processing and Control, 64, 102265. https://doi.org/10.1016/j.bspc.2020.102265

    Article  Google Scholar 

  17. Palumbo, B., Bianconi, F., Nuvoli, S., Spanu, A., & Fravolini, M. L. (2021). Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson’s disease and Parkinsonian syndromes. Clinical and Translational Imaging, 9(1), 19–35. https://doi.org/10.1007/s40336-020-00404-x

    Article  Google Scholar 

  18. Li, Z., Li, W., Wei, Y., Gui, G., Zhang, R., Liu, H., Chen, Y., & Jiang, Y. (2021). Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls. Computerized Medical Imaging and Graphics, 89, 101882. https://doi.org/10.1016/j.compmedimag.2021.101882

    Article  Google Scholar 

  19. de Bardeci, M., Ip, C. T., & Olbrich, S. (2021). Deep learning applied to electroencephalogram data in mental disorders: A systematic review. Biological Psychology, 162, 108117. https://doi.org/10.1016/j.biopsycho.2021.108117

    Article  Google Scholar 

  20. Najafzadeh, H., Esmaeili, M., Farhang, S., Sarbaz, Y., & Rasta, S. H. (2021). Automatic classification of schizophrenia patients using resting-state EEG signals. Physical and Engineering Sciences in Medicine, 44(3), 855–870. https://doi.org/10.1007/s13246-021-01038-7

    Article  Google Scholar 

  21. Sharma, G., Parashar, A., & Joshi, A. M. (2021). DepHNN: a novel hybrid neural network for electroencephalogram (EEG)-based screening of Depression. Biomedical Signal Processing and Control, 66, 102393. https://doi.org/10.1016/j.bspc.2020.102393

    Article  Google Scholar 

  22. Aslan, Z., & Akin, M. (2021). A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Physical and Engineering Sciences in Medicine. https://doi.org/10.1007/s13246-021-01083-2

    Article  Google Scholar 

  23. Tor, H. T., Ooi, C. P., Lim-Ashworth, N. S., Wei, J. K. E., Jahmunah, V., Oh, S. L., Acharya, U. R., & Fung, D. S. S. (2021). Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Computer Methods and Programs in Biomedicine, 200, 105941. https://doi.org/10.1016/j.cmpb.2021.105941

    Article  Google Scholar 

  24. Khessiba, S., Blaiech, A. G., Ben Khalifa, K., & Bedoui, M. H. (2021). Innovative deep learning models for EEG-based vigilance detection. Neural Computing and Applications, 33(12), 6921–6937. https://doi.org/10.1007/s00521-020-05467-5

    Article  Google Scholar 

  25. Sharma, N., Kolekar, M. H., & Jha, K. (2021). EEG based dementia diagnosis using multi-class support vector machine with motor speed cognitive test. Biomedical Signal Processing and Control, 63, 102102. https://doi.org/10.1016/j.bspc.2020.102102

    Article  Google Scholar 

  26. Siuly, S., Khare, S. K., Bajaj, V., Wang, H., & Zhang, Y. (2020). A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(11), 2390–2400. https://doi.org/10.1109/TNSRE.2020.3022715

    Article  Google Scholar 

  27. Seal, A., Bajpai, R., Agnihotri, J., Yazidi, A., Herrera-Viedma, E., & Krejcar, O. (2021). DeprNet: A deep convolution neural network framework for detecting depression using EEG. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2021.3053999

    Article  Google Scholar 

  28. Baygin, M., Yaman, O., Tuncer, T., Dogan, S., Barua, P. D., & Acharya, R. (2021). Automated accurate schizophrenia detection system using Collatz pattern technique with EEG signals. Biomedical Signal Processing and Control, 70, 102936. https://doi.org/10.1016/j.bspc.2021.102936

    Article  Google Scholar 

  29. Javeed, M., Gochoo, M., Jalal, A., & Kim, K. (2021). HF-SPHR: Hybrid features for sustainable physical healthcare pattern recognition using deep belief networks. Sustainability, 13(4), 1699. https://doi.org/10.3390/su13041699

    Article  Google Scholar 

  30. Kaushal, C., Kaushal, K., & Singla, A. (2021). Firefly optimization-based segmentation technique to analyse medical images of breast cancer. International Journal of Computer Mathematics, 98(7), 1293–1308. https://doi.org/10.1080/00207160.2020.1817411

    Article  MathSciNet  MATH  Google Scholar 

  31. Mera-Gaona, M., López, D. M., & Vargas-Canas, R. (2021). An Ensemble feature selection approach to identify relevant features from EEG signals. Applied Sciences, 11(15), 6983. https://doi.org/10.3390/app11156983

    Article  Google Scholar 

  32. Luo, Z., Jin, S., Li, Z., Huang, H., Xiao, L., Chen, H., Heidari, A. A., Hu, J., Chen, C., Chen, P., & Hu, Z. (2022). Hierarchical Harris hawks optimization for epileptic seizure classification. Computers in Biology and Medicine, 145, 105397. https://doi.org/10.1016/j.compbiomed.2022.105397

    Article  Google Scholar 

  33. Tuncer, T., Dogan, S., & Subasi, A. (2021). EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomedical Signal Processing and Control, 68, 102591. https://doi.org/10.1016/j.bspc.2021.102591

    Article  Google Scholar 

  34. AlSharabi, K., Salamah, Y. B., Abdurraqeeb, A. M., Aljalal, M., & Alturki, F. A. (2022). EEG Signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access, 10, 89781–89797. https://doi.org/10.1109/ACCESS.2022.3198988

    Article  Google Scholar 

  35. Caza-Szoka, M., & Massicotte, D. (2022). Windowing compensation in Fourier based surrogate analysis and application to EEG signal classification. IEEE Transactions on Instrumentation and Measurement, 71, 1–11. https://doi.org/10.1109/TIM.2022.3149325

    Article  Google Scholar 

  36. Harishvijey, A., & Raja, J. B. (2022). Automated technique for EEG signal processing to detect seizure with optimized variable Gaussian filter and Fuzzy RBFELM classifier. Biomedical Signal Processing and Control, 74, 103450. https://doi.org/10.1016/j.bspc.2021.103450

    Article  Google Scholar 

  37. Sharma, A., Rai, J. K., & Tewari, R. P. (2022). Schizophrenia detection using biomarkers from electroencephalogram signals. IETE Journal of Research, 68(4), 3056–3064. https://doi.org/10.1080/03772063.2020.1753587

    Article  Google Scholar 

  38. Bagherzadeh, S., Shahabi, M. S., & Shalbaf, A. (2022). Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal. Computers in Biology and Medicine, 146, 105570. https://doi.org/10.1016/j.compbiomed.2022.105570

    Article  Google Scholar 

  39. WeiKoh, J. E., Rajinikanth, V., Vicnesh, J., Pham, T. H., Oh, S. L., Yeong, C. H., Sankaranarayanan, M., Kamath, A., Bairy, G. M., Barua, P. D., & Cheong, K. H. (2022). Application of local configuration pattern for automated detection of schizophrenia with electroencephalogram signals. Expert Systems, e12957 https://doi.org/10.1111/exsy.12957

  40. Khare, S. K., & Bajaj, V. (2022). A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Computers in Biology and Medicine, 141, 105028. https://doi.org/10.1016/j.compbiomed.2021.105028

    Article  Google Scholar 

Download references

Acknowledgements

None

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Human Animal and Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of analysis, formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Kanungo, A., Saxena, N.K. et al. An Adaptive Optimized Schizophrenia Electroencephalogram Disease Prediction Framework. Wireless Pers Commun 130, 1191–1213 (2023). https://doi.org/10.1007/s11277-023-10326-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10326-2

Keywords

Navigation