Skip to main content
Log in

A Compact Tri-Band EM-Shield for 5G/X/Ku-Band Indoor Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An FSS based electromagnetic (EM) shield for 5G, X-band and Ku-band indoor shielding applications is proposed in this manuscript. This shield offers a tri-band and polarization-insensitive behavior. A wide rejection bandwidth (10 dB) of atleast 1400 MHz, 3200 MHz and 1100 MHz for 5G, X and Ku-band is observed. The design incorporates meandered square loop (MSL) and slitted Jerusalem cross (SJC) provides shielding for the targeted bands while offering excellent incident wave angular stability up to 75 degrees. In addition to this, a lumped circuit model, metamaterial (MTM) characterization and finite element boundary integral equation (FEBI) investigations are also performed to evaluate and confirm the performance of the FSS. Dual meta-material characteristics are observed including ENG (epsilon-negative)/MNG (mu-negative) while achieving at least 30 dB shielding effectiveness (SE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

This work include all the datasets and findings.

References

  1. Munk, B. A. (2000). Frequency selective surface: Theory and design. Wiley Interscience.

    Book  Google Scholar 

  2. Bilal, M., Saleem, R., Shabbir, T., & Shafique, M. (2017). F: A novel miniaturized FSS based electromagnetic shield for SATCOM applications. Microwave and Optical Technology Letters, 59(9), 2107–2112.

    Article  Google Scholar 

  3. Xia, B. G., Zhang, D. H., Meng, J., Huang, J., Yao, C. F., & Zhang, J. S. (2013). Terahertz FSS for space borne passive remote sensing application. Electronics Letters, 49(22), 1398–1399.

    Article  Google Scholar 

  4. Meng, L., & Behdad, N. (2013). Frequency selective surfaces for pulsed high-power microwave applications. IEEE Transactions on Antennas and Propagation, 61(2), 677–687.

    Article  Google Scholar 

  5. Lee, J. (2018). Spectrum for 5G: Global status, challenges, and enabling technologies. IEEE Communications Magazine, 56, 12–18.

    Article  Google Scholar 

  6. Kothapudi, V. K., & Kumar, V. (2018). A 6-port two-dimensional 3 × 3 series-fed planar array antenna for dual-polarized X-band airborne synthetic aperture radar applications. IEEE Access, 6, 12001–12007.

  7. Navarro, W., Velez, J. C., Orfila, A., Lonin, S. (2019). A shadowing mitigation approach for sea state parameters estimation using X-band remotely sensing radar data in coastal areas. IEEE Transactions on Geoscience and Remote Sensing, 57, 92–6310.

  8. Perry, G. W. (2018). Citizen radio science: An analysis of amateur radio transmissions with e-POP RRI. Radio Science, 53, 933–947.

  9. Mirabito, M., & Morgenstern, B. (2004). Satellites: Operations and applications, the new communication technologies. Focal Press.

  10. Bilal, M., Saleem, R., Jabbar, A., & Shafique, M. F. (2021). A miniaturized and polarization independent electromagnetic shield for C and X-band applications. Wireless Personal Communications, 117, 405–416.

  11. Wang, H., Qu, S., Wang, J., Yan, M., & Zheng, L. (2020). Dual‐band miniaturised FSS with stable resonance frequencies of 3.4/4.9 GHz for 5G communication systems applications. IET Microwaves, Antennas and Propagation, 14, 1–6.

  12. Wang, H., Yan, M., Qu, S., Zheng, L., & Wang, J. (2019). Design of a self-complementary frequency selective surface with multi-band polarization separation characteristic. IEEE Access, 7, 36788–36799.

    Article  Google Scholar 

  13. Baladi, E., Semple, M., & Iyer, A. K. (2020). Single-layer dual-band polarization-selective Metafilm with independently controlled and closely spaced shielding bands. IEEE Transactions on Antennas and Propagation, 68, 1448–1457.

  14. Sofi, M. A., Saurav, K., & Koul, S. K. (2020). Frequency-selective surface-based compact single substrate layer dual-band transmission-type linear-to-circular polarization converter. IEEE Transactions on Microwave Theory and Techniques, 2020, 1.

  15. Paiva S. B., Neto, V. P. S., D'Assunção, A. G. (2020). A new compact, stable, and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz. IEEE Transactions on Electromagnetic Compatibility, 62(3), 691–697.

  16. He, Y., Feng, W., Guo, S., Wei, J., Zhang, Y., Huang, Z., Li, C., Miao, L., Jiang, J. (2020). Design of a dual-band electromagnetic absorber with frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 19(5), 841–845.

  17. Guo, Q., Su, J., Li, Z., Song, J., Guan, Y. (2020) Miniaturized-element frequency-selective rasorber design using characteristic modes analysis. IEEE Transactions on Antennas and Propagation, 2020, 1.

  18. Farooq, U., Shafique, M. F., & Mughal, M. J. (2020). Polarization insensitive dual band frequency selective surface for RF shielding through glass windows. IEEE Transactions on Electromagnetic Compatibility, 62(1), 93–100.

    Article  Google Scholar 

  19. Kundu, D., Mohan, A., & Chakrabarty, A. (2016). Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas and Wireless Propagation Letters, 15, 1589–1592.

  20. Syed, I. S., Ranga, Y., Matekovits, L., Esselle, K. P., & Hay, S. (2014). A single-layer frequency-selective surface for ultrawideband electromagnetic shielding. IEEE Transactions on Electromagnetic Compatibility, 56, 1404–1411.

  21. Zhao, Z., Shi, H., Guo, J., Li, W., & Zhang, A. (2017). Stopband frequency selective surface with ultra-large angle of incidence. IEEE Antennas and Wireless Propagation Letters, 16, 553–556.

  22. Bakir, M., Delihacioglu, K., Karaaslan, M., Dincer, F., & Sabah, C. (2016). U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations. IET Microwaves, Antennas Propagation, 10, 293–300.

  23. Mirza, H., Hossain, T. M., Soh, P. J., Jamlos, M. F., Ramli, M. N., Al-Hadi, A. A., Hassan, E. S., & Yan, S. (2019). Deployable linear-to-circular polarizer using PDMS based on unloaded and loaded circular FSS arrays for pico-satellites. IEEE Access, 7, 2034–2041.

  24. Chatterjee, A., & Parui, S. K. (2018). Beamwidth control of omnidirectional antenna using conformal frequency selective surface of different curvatures. IEEE Transactions on Antennas and Propagation, 66, 3225–3230.

  25. Coves, A., Marini, S., Gimeno, B., Sánchez, D., Rodríguez, A., & Boria, V. E. (2016). Design of narrow-band dielectric frequency-selective surfaces for microwave applications. IET Microwaves, Antennas Propagation, 10, 251–255.

  26. Li, H., Yang, C., Cao, Q., & Wang, Y. (2017). An ultrathin bandpass frequency selective surface with miniaturized element. IEEE Antennas and Wireless Propagation Letters, 16, 341–344.

  27. Gao, B., Yuen, M. M. F., & Ye, T. T. (2017). Flexible frequency selective metamaterials for microwave applications. Scientific Reports, 2017, 7.

  28. Dewani, A. A., O’Keefe, S. G., Thiel, D. V., & Galehdar, A. (2018). Window RF shielding film using printed FSS. IEEE Transactions on Antennas and Propagation, 66, 790–796.

  29. Nauman, M., Saleem, R., Rashid, A. K., & Shafique, M. F. (2016). A miniaturized flexible frequency selective surface for X-band applications. IEEE Transactions on Electromagnetic Compatibility, 58, 419–428.

  30. Gu, C., Izquierdo, B. S., Gao, S., Batchelor, J. C., Parker, E. A., Qin, F., Wei, G., Li, J., & Xu, J. (2017). Dual-band electronically beam-switched antenna using slot active frequency selective surface. IEEE Transactions on Antennas and Propagation, 65, 393–1398.

  31. Wang, L. B., See, K. Y., & Zhang, J. W. (2011). Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications. IEEE Transactions on Electromagnetic Compatibility, 53, 700–705.

  32. Costa, F., Monorchio, A., & Manara, G. (2014). An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurface. The Applied Computational Electromagnetics Society Journal, 29(12), 960–976.

    Google Scholar 

  33. Al-Bawri, S. S., Hwang Goh, H., Islam, M. S., Wong, H. Y., Jamlos, M. F., Narbudowicz, A., Jusoh, M., Sabapathy, T., Khan, R., & Islam, M. T. (2020). Compact ultra-wideband monopole antenna loaded with metamaterial. Sensors, 20, 796.

  34. Erdemli, Y. E., Ertel, K., Gilbert, R. A., Wright, D. E., & Volakis, J. L. (2002). Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays. IEEE Transactions on Antennas and Propagation, 50, 1716–1724.

  35. Mei, P., Zhang, S., Lin, X. Q., & Pedersen, G. F. (2019). A triple-band absorber with wide absorption bandwidths using an impedance matching theory. IEEE Antennas and Wireless Propagation Letters, 18, 521–525.

  36. Zhou, Q., Guo, M., Moghadas, H., Wu, Z., Liu, P., & Daneshmand, M. (2019). Frequency selective rasorber with three transmission bands and three absorption bands. IEEE Access, 7, 160973–160981.

  37. Abdollahvand, M., Forooraghi, K., Encinar, J. A., Atlasbaf, Z., & Martinez‐de‐Rioja, E. (2020). Design and demonstration of a tri‐band frequency selective surface for space applications in X, K, and Ka bands. Microwave and Optical Technology Letters, 62, 742–1751.

  38. Krushna Kanth, V., & Raghavan, S. (2020). Ultrathin wideband slot and patch FSS elements with sharp band edge characteristics. International Journal of Electronics, 107, 1365–1385.

  39. Farooq, U., Shafique, M. F., Iftikhar, A., Mughal, M. J. (2023). Polarization insensitive tri-band FSS for RF shielding at normal and higher temperatures by retrofitting on ordinary glass windows. IEEE Transactions on Antennas and Propagation, 2023, 1.

  40. Dey, S., & Dey, S. (2022). Conformal miniaturized angular stable triband frequency selective surface for EMI shielding. IEEE Transactions on Electromagnetic Compatibility, 64(4), 1031–1041.

    Article  Google Scholar 

  41. Kumar, T. R. S., Vinoy, K. J. (2021). A miniaturized angularly stable FSS for shielding GSM 0.9, 1.8, and Wi-Fi 2.4 GHz bands. IEEE Transactions on Electromagnetic Compatibility, 63(5), 1605–1608.

Download references

Acknowledgements

The authors are very thankful to chief minister delivery unit (CMDU) Balochistan, for sharing their resources and providing technical support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Saleem, N., Quddus, A. et al. A Compact Tri-Band EM-Shield for 5G/X/Ku-Band Indoor Wireless Applications. Wireless Pers Commun 130, 3027–3045 (2023). https://doi.org/10.1007/s11277-023-10415-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10415-2

Keywords