Abstract
In this manuscript, a new four-quadrant analog multiplier has been designed using a current-mode analog building block namely an extra-X second-generation current-controlled conveyor, and two MOS transistors. The passive components have not been used in the design of the proposed analog multiplier which leads to a simpler configuration. The proposed multiplier has been simulated using the PSPICE simulation tool with 0.18 µm Taiwan semiconductor manufacturing company parameters. The obtained simulation results are in close agreement with the theory. The performance of the proposed multiplier is satisfactory for the input voltage range of ± 0.6 V and a supply voltage of ± 0.9 V. The power consumption of the proposed multiplier is 0.26 mW. The multiplier is less sensitive to variations in temperature. The − 3 dB bandwidth of the proposed multiplier is 287.44 MHz whereas the output noise is 6.02 nV/√Hz for a 1 kΩ load. The non-ideal analysis of the proposed multiplier has also been done including all parasitic impedances. The performance of the proposed multiplier is found to be satisfactory in the application of amplitude modulation, squarer, and frequency doubler circuits.

















Similar content being viewed by others
Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Gilbert, B. (1968). A precise four-quadrant multiplier with sub nano second response. IEEE Journal of Solid-State Circuits, 3(4), 365–373. https://doi.org/10.1109/JSSC.1968.1049925
Babanezhad, J. N., & Temes, G. C. (1985). A 20–v four-quadrant CMOS analog multiplier. IEEE Journal of Solid-State Circuits, 20(6), 1158–1168. https://doi.org/10.1109/JSSC.1985.1052454
Qin, S. C., & Geiger, R. L. (1987). A ± 5–v CMOS analog multiplier. IEEE Journal of Solid-State Circuits, 22(6), 1143–1146. https://doi.org/10.1109/JSSC.1987.1052866
Yasumoto, M., & Enomoto, T. (1987). Integrated MOS four-quadrant analogue multiplier using switched-capacitor technique. Electronics Letters, 18(18), 769. https://doi.org/10.1049/el:19820520
Peña-Finol, J. S., & Connelly, J. A. (1987). A MOS four-quadrant analog multiplier using the quarter-square technique. IEEE Journal of Solid-State Circuits, 22(6), 1064–1073. https://doi.org/10.1109/JSSC.1987.1052856
Khachab, N. I., & Ismail, M. (1989). MOS multiplier/divider cell for analogue VLSI. Electronics Letters, 25(23), 1550–1552. https://doi.org/10.1049/el:19891042
Khachab, N. I., & Ismail, M. (1991). A nonlinear CMOS analog cell for VLSI signal and information processing. IEEE Journal of Solid-State Circuits, 26(11), 1689–1699. https://doi.org/10.1109/4.98991
Liu, S. I., Wu, D. S., Tsao, H. W., Wu, J., & Tsay, J. H. (1993). Nonlinear circuit applications with current conveyors. IEE Proceedings, Part G: Circuits, Devices and Systems, 140(1), 1–6. https://doi.org/10.1049/ip-g-2.1993.0001
Ismail, M., Brannen, R., Takagi, S., Fujii, N., Khachab, N. I., Khan, R., & Aaserud, O. (1994). Configurable CMOS multiplier/divider circuits for analog VLSI. Analog Integrated Circuits and Signal Processing, 5(3), 219–234. https://doi.org/10.1007/BF01261414
Elwan, H., & Soliman, A. (1996). CMOS differential current conveyors and applications for analog VLSI. Analog Integrated Circuits and Signal Processing, 11(1), 35–45. https://doi.org/10.1007/BF00174237
Chiu, W., Liu, S.-I., Tsao, H.-W., & Chen, J.-J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings - Circuits, Devices and Systems, 143(2), 91. https://doi.org/10.1049/ip-cds:19960223
Premont, C., Abouchi, N., Grisel, R., & Chante, J. P. (1999). A BiCMOS current conveyor based four-quadrant analog multiplier. Analog Integrated Circuits and Signal Processing, 19(2), 159–162. https://doi.org/10.1023/A:1008305916139
El-Adawy, A. A., Soliman, A. M., & Elwan, H. O. (2000). A novel fully differential current conveyor and applications for analog VLSI. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(4), 306–313. https://doi.org/10.1109/82.839666
Surakampontorn, W., Khanittha, K., Chalermpan, F. (2002). A simple current mode multiplier divider circuit using OTAs. In International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2002) (pp. 658–661).
Kaewdang, K., Fongsamut, C., & Surakampontorn, W. (2003). A wide-band current-mode OTA-based analog multiplier-divider. Proceedings - IEEE International Symposium on Circuits and Systems, 1, 349–352. https://doi.org/10.1109/iscas.2003.1205572
Keskin, A. Ü. (2004). A four quadrant analog multiplier employing single CDBA. Analog Integrated Circuits and Signal Processing, 40(1), 99–101. https://doi.org/10.1023/B:ALOG.0000031440.22112.eb
Ciftcioglu, S., Kuntman, H., & Zeki. (2005). New high-performance CMOS differential current conveyor realization. In Proceedings of ELECO 2005: The 4th International Conference on Electrical and Electronics, December 2005 (pp. 68–71).
Riewruja, V., & Rerkratn, A. (2005). Analog multiplier using operational amplifiers. In International Conference on Control, Automation, and Systems (ICCAS2005), March 2005, 1–4.
Zeki, A. (2005). DXCCII-based four-quadrant analog multipliers using triode MOSFETs. 2 (June 2014), 1–6.
Siripruchyanun, M. (2007). A design of analog multiplier and divider using current controlled current differencing buffered amplifiers. 2007 International Symposium on Integrated Circuits ISIC, 1, 568–571. https://doi.org/10.1109/ISICIR.2007.4441925
Jaikla, W., & Siripruchyanun, M. (2007). A novel current-mode multiplier/divider employing only single Dual-Output Current Controlled CDTA. 2007 International Symposium on Communications and Information Technologies, 30(2), 106–109. https://doi.org/10.1109/ISCIT.2007.4391994.
Jaikla, W., & Siripruchyanun, M. (2007). A current-mode multiplier/divider employing only single Dual-Output Current Controlled CDTA. 2007 International Symposium on Communications and Information Technologies, 30(2), 106–109. https://doi.org/10.1109/ISCIT.2007.4391994.
Siripruchyanun, M., & Jaikla, W. (2008). A current-mode analog multiplier/divider based on CCCDTA. AEU - International Journal of Electronics and Communications, 62(3), 223–227. https://doi.org/10.1016/j.aeue.2007.03.009
Narksarp, W., Pawarangkoon, P., Kiranon, W., & Wadkien, P. (2009). A four-quadrant current-mode multiplier/divider building block. 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2009, 1, 574–577. https://doi.org/10.1109/ECTICON.2009.5137072.
Young, T. C. (2009). Improving the U.S. Military’S Adaptability Against the Salafist-Jihadi Threat. June 2009, 41–48. https://doi.org/10.1049/iet-cds.
Pisutthipong, N., & Siripruchyanun, M. (2009). A novel simple current-mode multiplier/divider employing only single multiple-output current controlled CTTA. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1–4. https://doi.org/10.1109/TENCON.2009.5395877.
Riewruja, V., & Rerkratn, A. (2010). Analog multiplier using operational amplifiers. Indian Journal of Pure and Applied Physics, 48(1), 67–70.
Petchakit, W., Kiranon, W., Wardkien, P., & Petchakit, S. (2010). A current-mode CCCII-based analog multiplier/divider. ECTI-CON 2010 - The 2010 ECTI International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 221–224).
Riewruja, V., & Rerkratn, A. (2011). Four-quadrant analogue multiplier using operational amplifier. International Journal of Electronics, 98(4), 459–474. https://doi.org/10.1080/00207217.2010.520155
Myderrizi, I., Minaei, S., & Yuce, E. (2011). CCII+based fully CMOS four-quadrant multiplier. Canadian Conference on Electrical and Computer Engineering, 000759–000762. https://doi.org/10.1109/CCECE.2011.6030557.
Tangsrirat, W., Pukkalanun, T., Mongkolwai, P., & Surakampontorn, W. (2011). Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. AEU - International Journal of Electronics and Communications, 65(3), 198–203. https://doi.org/10.1016/j.aeue.2010.02.017
Mongkolwai, P., & Tangsrirat, W. (2011). CFTA-based current multiplier/divider circuit. International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2011, 1–4. https://doi.org/10.1109/ISPACS.2011.6146074
Pandey, R., Pandey, N., Sriram, B., & Paul, S. K. (2012). Single OTRA based analog multiplier and its applications. ISRN Electronics, 2012(Mdcc), 1–7. https://doi.org/10.5402/2012/890615.
Kumngern, M. (2013). A DXCCII-based four-quadrant multiplier. Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013, June, 738–741. https://doi.org/10.1109/PEOCO.2013.6564644.
Kumngern, M., & Torteanchai, U. (2013). A CMOS current-mode multiplier/divider using a current amplifier. Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013, June, 742–745. https://doi.org/10.1109/PEOCO.2013.6564645.
Abuelma’atti, M. T., & Al-Qahtani, M. A. (2014). A current-mode current-controlled current-conveyor-based analogue multiplier/divider. International Journal of Electronics, 85(1), 71–77. https://doi.org/10.1080/002072198134364
Pathak, K., Singh, J. K. A., Senani, R., & R. (2014). New Multiplier/Divider Using a Single CDBA. American Journal of Electrical and Electronic Engineering, 2(3), 98–102. https://doi.org/10.12691/ajeee-2-3-7
Arora, T. S., & Sharma, R. K. (2016). A novel cubic generator realised by CCIII-based four quadrant analog multiplier and divider. Indian Journal of Science and Technology, 9(38), 1. https://doi.org/10.17485/ijst/2016/v9i38/100026
Bhanja, M., & Ray, B. N. (2016). OTA-Based Logarithmic Circuit for Arbitrary Input Signal and Its Application. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(2), 638–649. https://doi.org/10.1109/TVLSI.2015.2406953.
Lawanwisut, S., Satthaphol, P., Payakkakul, K., Pipatthitikorn, P., & Siripruchyanun, M. (2016). A Temperature-insensitive Current-mode Multiplier/Divider Using only Double-output VDTA. Procedia Computer Science, 86(March), 156–159. https://doi.org/10.1016/j.procs.2016.05.042
Chadha, U., & Arora, T. S. (2017). Four quadrant analog multiplier/divider employing single OTRA. Communication and Computing Systems - Proceedings of the International Conference on Communication and Computing Systems, ICCCS, 2016(2011), 635–639. https://doi.org/10.1201/9781315364094-115
Tuntrakool, S., Suwanjan, P., & Jaikla, W. (2017). Temperature insensitive current-mode four quadrant multiplier using single CFCTA. MATEC Web of Conferences, 95, 4–7. https://doi.org/10.1051/matecconf/20179514001
Roy, S., Paul, T. K., & Pal, R. R. (2017). A new method of realization of four-quadrant analog multiplier using operational amplifiers and MOSFETs. Journal of Physical Sciences, 22(2017), 163–173.
Ettaghzouti, T., Hassen, N., Garradhi, K., & Besbes, K. (2018). Wide bandwidth CMOS four-quadrant mixed mode analogue multiplier using a second generation current conveyor circuit. Turkish Journal of Electrical Engineering and Computer Sciences, 26(2), 882–894. https://doi.org/10.3906/elk-1708-179
Roy, S., Paul, T. K., Maiti, S., & Pal, R. R. (2018). Two new analog multipliers/dividers employing single current differencing buffer amplifier. AEU - International Journal of Electronics and Communications, 88(March), 11–19. https://doi.org/10.1016/j.aeue.2018.03.002
Rajpoot, J., & Maheshwari, S. (2020). High performance four-quadrant analog multiplier using DXCCII. Circuits, Systems, and Signal Processing, 39(1), 54–64. https://doi.org/10.1007/s00034-019-01179-x
Roy, S., & Pal, R. R. (2020). Single fully differential second generation current conveyor based four-quadrant analog multiplier design and its applications. Chinese Journal of Electronics, 29(5), 841–851. https://doi.org/10.1049/cje.2020.08.012
Kumar, A. (2021). Single EXCCII-based analog multiplier structure. Journal of Circuits, Systems and Computers, 30(6), 1. https://doi.org/10.1142/S0218126621501073
Raj, A., Bhaskar, D. R., & Kumar, P. (2021). Novel architecture of four quadrant analog multiplier/divider circuit employing single CFOA. Analog Integrated Circuits and Signal Processing, 108(3), 689–701. https://doi.org/10.1007/s10470-021-01915-x
Sharma, V. K., Parveen, T., & Ansari, M. S. (2021). Four quadrant analog multiplier based memristor emulator using single active element. AEU - International Journal of Electronics and Communications, 130, 153575. https://doi.org/10.1016/j.aeue.2020.153575
Dhawan, R., Aggarwal, B., Narang, N., & Rai, S. K. (2022). A new low voltage current mode analog multiplier/divider circuit based on FGMOS translinear loop. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 46(2), 381–394. https://doi.org/10.1007/s40998-021-00476-z
Maheshwari, S. (2013). Current Conveyor all-pass sections: Brief review and novel solution. The Scientific World Journal, 2013, 1–6. https://doi.org/10.1155/2013/429391
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Das, R., Rai, S.K. New Electronically Tunable Four-Quadrant Analog Multiplier Employing Single EXCCCII and Its Applications. Wireless Pers Commun 131, 165–186 (2023). https://doi.org/10.1007/s11277-023-10422-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-023-10422-3