Skip to main content
Log in

An Optimized Elman Neural Network for Contactless Palm-Vein Recognition Framework

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Contactless palm vein recognition plays a significant role in biometric application because of its high stability, non-intrusive, flexibility and unique nature. Thus, different neural approaches were proposed to identify and segment the vein from the contactless palm image. But the traditional techniques face challenging issues in vein tracking and segmentation. Thus, a novel hybrid optimized deep network named Monkey-based Elman Neural Vein Recognition Framework was developed in this article. First, the dataset is pre-processed, and the palm region is extracted. Then, the extracted features are matched with the saved ground truth features. Further, the veins are tracked and segmented in the classification phase. The spider monkey fitness function is integrated into the developed model, which tracks and segments the vein from the palm image. The presented work was implemented, and the results are estimated for the palm image dataset. Furthermore, the results are verified with a comparative analysis. The highest accuracy score for the Contactless Palm-Vein Recognition by the proposed model is 99.76, and the lowest error rate is 0.0089%. Hence, the comparative analysis shows that the developed model earned better outcomes than the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Singh, A., Prakash, S., Kumar, A., & Kumar, D. (2022). A proficient approach for face detection and recognition using machine learning and high-performance computing. Concurrency and Computation: Practice and Experience, 34(3), e6582. https://doi.org/10.1002/cpe.6582

    Article  Google Scholar 

  2. Haidri, R. A., Alam, M., Shahid, M., Prakash, S., & Sajid, M. (2022). A deadline aware load balancing strategy for cloud computing. Concurrency and Computation: Practice and Experience, 34(1), e6496. https://doi.org/10.1002/cpe.6496

    Article  Google Scholar 

  3. Srivastava, S., Kumar, A., Singh, A., Prakash, S., & Kumar, A. (2022). An improved approach towards biometric face recognition using artificial neural network. Multimedia Tools and Applications, 81(6), 8471–8497. https://doi.org/10.1007/s11042-021-11721-2

    Article  Google Scholar 

  4. Yadav, R., Zhang, W., Elgendy, I. A., & Prakash, S. (2021). Smart healthcare: RL-based task offloading scheme for edge-enable sensor networks. IEEE Sensors Journal, 21(22), 24910–24918. https://doi.org/10.1109/JSEN.2021.3096245

    Article  Google Scholar 

  5. Dhawankar, P., Kumar, A., Crespi, N., Busawon, K., Prakash, S., & Kaiwartya, O. (2021). Next-generation indoor wireless systems: Compatibility and migration case study. IEEE Access, 9, 156915–156929. https://doi.org/10.1109/ACCESS.2021.3126827

    Article  Google Scholar 

  6. Rajak, R., Kumar, S., Prakash, S., Rajak, N., & Dixit, P. (2023). A novel technique to optimize quality of service for directed acyclic graph (DAG) scheduling in cloud computing environment using heuristic approach. The Journal of Supercomputing, 79(2), 1956–1979. https://doi.org/10.1007/s11227-022-04729-4

    Article  Google Scholar 

  7. Rajak, N., Rajak, R., & Prakash, S. (2022). A workflow scheduling method for cloud computing platform. Wireless Personal Communications, 126(4), 3625–3647. https://doi.org/10.1007/s11277-022-09882-w

    Article  Google Scholar 

  8. Agrawal, A., Ghune, N., Prakash, S., & Ramteke, M. (2021). Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP. Expert Systems with Applications, 181, 115192. https://doi.org/10.1016/j.eswa.2021.115192

    Article  Google Scholar 

  9. Singh, A., Singh, S., & Prakash, S. (2023). Critical comparative analysis and recommendation in mac protocols for wireless mesh networks using multi-objective optimization and statistical testing. Wireless Personal Communications, 129, 2319–2344. https://doi.org/10.1007/s11277-023-10228-3

    Article  Google Scholar 

  10. Singh, A., Prakash, S., & Singh, S. (2022). Optimization of reinforcement routing for wireless mesh network using machine learning and high-performance computing. Concurrency and Computation: Practice and Experience, 34(15), e6960. https://doi.org/10.1002/cpe.6960

    Article  Google Scholar 

  11. Sukesh Adiga, V., & Sivaswamy, J. (2019). Fpd-m-net: Fingerprint image denoising and inpainting using m-net based convolutional neural networks. Inpainting and denoising challenges. Cham: Springer. https://doi.org/10.1007/978-3-030-25614-2_4

    Chapter  Google Scholar 

  12. Kumar, C., Bharti, T. S., & Prakash, S. (2023). A hybrid data-driven framework for spam detection in online social network. Procedia Computer Science, 218, 124–132. https://doi.org/10.1016/j.procs.2022.12.408

    Article  Google Scholar 

  13. Zhang, Y., Cai, X., Zhang, Y., Kang, H., Ji, X., & Yuan, X. (2021). TAU: Transferable attention U-Net for optic disc and cup segmentation. Knowledge-based Systems, 213, 106668. https://doi.org/10.1016/j.knosys.2020.106668

    Article  Google Scholar 

  14. Baumgartner, M., Jäger, P. F., Isensee, F., & Maier-Hein, K. H. (2021). nndetection: A self-conFiguring method for medical object detection. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_51

  15. Azar, J., Tayeh, G. B., Makhoul, A., & Couturier, R. (2022). Efficient lossy compression for IoT using SZ and reconstruction with 1D U-Net. Mobile Networks and Applications. https://doi.org/10.1007/s11036-022-01918-6

    Article  Google Scholar 

  16. Bigalke, A., Hansen, L., Diesel, J., & Heinrich, M. P. (2021). Seeing under the cover with a 3D U-Net: Point cloud-based weight estimation of covered patients. International Journal of Computer Assisted Radiology and Surgery, 16(12), 2079–2087. https://doi.org/10.1007/s11548-021-02476-0

    Article  Google Scholar 

  17. Oh, S. L., Ng, E. Y. K., San Tan, R., & Acharya, U. R. (2019). Automated beat-wise arrhythmia diagnosis using modified U-Net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Computers in Biology and Medicine, 105, 92–101. https://doi.org/10.1016/j.compbiomed.2018.12.012

    Article  Google Scholar 

  18. Tong, Y., Liu, Y., Zhao, M., Meng, L., & Zhang, J. (2021). Improved U-Net MALF model for lesion segmentation in breast ultrasound images. Biomedical Signal Processing and Control, 68, 102721. https://doi.org/10.1016/j.bspc.2021.102721

    Article  Google Scholar 

  19. Adiraju, R. V., Masanipalli, K. K., Reddy, T. D., Pedapalli, R., Chundru, S., & Panigrahy, A. K. (2021). An extensive survey on finger and palm vein recognition system. Materials Today: Proceedings, 45, 1804–1808. https://doi.org/10.1016/j.matpr.2020.08.742

    Article  Google Scholar 

  20. Ren, H., Sun, L., Guo, J., Han, C., & Wu, F. (2021). Finger vein recognition system with template protection based on convolution neural network. Knowledge-based Systems, 227, 107159. https://doi.org/10.1016/j.knosys.2021.107159

    Article  Google Scholar 

  21. Ahmad, F., Cheng, L. M., & Khan, A. (2019). Lightweight and privacy-preserving template generation for palm-vein-based human recognition. IEEE Transactions on Information Forensics and Security, 15, 184–194. https://doi.org/10.1109/TIFS.2019.2917156

    Article  Google Scholar 

  22. Jia, W., Ren, Q., Zhao, Y., Li, S., Min, H., & Chen, Y. (2022). EEPNet: An Efficient and Effective Convolution Neural Network for Palm print Recognition. Pattern Recognition Letters, 159, 140–149. https://doi.org/10.1016/j.patrec.2022.05.015

    Article  Google Scholar 

  23. Horng, S. J., Vu, D. T., Nguyen, T. V., Zhou, W., & Lin, C. T. (2021). Recognizing Palm Vein in Smartphone Using RGB Images. IEEE Transactions on Industrial Informatics, 18(9), 5992–6002. https://doi.org/10.1109/TII.2021.3134016

    Article  Google Scholar 

  24. Sharma, H., Hazrati, G., & Bansal, J. C. (2019). Spider monkey optimization algorithm. Evolutionary and swarm intelligence algorithms (pp. 43–59). Cham: Springer. https://doi.org/10.1007/978-3-319-91341-4_4

    Chapter  Google Scholar 

  25. Xu, L., Yu, X., & Gulliver, T. A. (2021). Intelligent outage probability prediction for mobile IoT networks based on an IGWO-Elman neural network. IEEE Transactions on Vehicular Technology, 70(2), 1365–1375. https://doi.org/10.1109/TVT.2021.3051966

    Article  Google Scholar 

  26. Zhang, J., Lu, Z., & Li, M. (2020). Active contour-based method for finger-vein image segmentation. IEEE Transactions on Instrumentation and Measurement, 69(11), 8656–8665. https://doi.org/10.1109/TIM.2020.2995485

    Article  Google Scholar 

  27. Ma, H., & Zhang, S. Y. (2019). Contactless finger-vein verification based on oriented elements feature. Infrared Physics and Technology, 97, 149–155. https://doi.org/10.1016/j.infrared.2018.12.021

    Article  Google Scholar 

  28. Chen, Y. Y., Hsia, C. H., & Chen, P. H. (2021). Contactless multispectral palm-vein recognition with lightweight convolutional neural network. IEEE Access, 9, 149796–149806. https://doi.org/10.1109/ACCESS.2021.3124631

    Article  Google Scholar 

  29. Wu, W., Wang, Q., Yu, S., Luo, Q., Lin, S., Han, Z., & Tang, Y. (2021). Outside box and contactless palm vein recognition based on a wavelet denoising ResNet. IEEE Access, 9, 82471–82484. https://doi.org/10.1109/ACCESS.2021.3086811

    Article  Google Scholar 

  30. Aydemir, E., & Alalawi, R. T. E. (2023). Classification of hand images by person, age and gender with the median robust extended local binary model. Balkan Journal of Electrical and Computer Engineering, 11(1), 78–87. https://doi.org/10.17694/bajece.1171905

    Article  Google Scholar 

  31. Bhatti, U. A., Nizamani, M. M., & Mengxing, H. (2022). Climate change threatens Pakistan’s snow leopards. Science, 377(6606), 585–586. https://doi.org/10.1126/science.add9065

    Article  Google Scholar 

  32. Bhatti, U. A., Zeeshan, Z., Nizamani, M. M., Bazai, S., Yu, Z., & Yuan, L. (2022). Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere, 288, 132569. https://doi.org/10.1016/j.chemosphere.2021.132569

    Article  Google Scholar 

  33. Bhatti, U. A., WuBazai, G. S. U., Nawaz, S. A., Baryalai, M., Bhatti, M. A., Hasnain, A., & Nizamani, M. M. (2022). A pre- to post-COVID-19 change of air quality patterns in Anhui Province using path analysis and regression. Polish Journal of Environmental Studies, 31(5), 4029–4042. https://doi.org/10.15244/pjoes/148065

    Article  Google Scholar 

  34. Aamir, M., Li, Z., Bazai, S., Wagan, R. A., Bhatti, U. A., Nizamani, M. M., & Akram, S. (2021). Spatiotemporal change of air-quality patterns in Hubei Province—a pre- to post-covid-19 analysis using path analysis and regression. Atmosphere, 12, 1338. https://doi.org/10.3390/atmos12101338

    Article  Google Scholar 

  35. Nawaz, S. A., Li, J., Bhatti, U. A., Bazai, S. U., Zafar, A., Bhatti, M. A., Mehmood, A., Ain, Q., & Shoukat, M. U. (2021). A hybrid approach to forecast the COVID-19 epidemic trend. PLoS ONE, 16(10), e0256971. https://doi.org/10.1371/journal.pone.0256971

    Article  Google Scholar 

  36. Cervantes Galvan, L. P., Aslam Bhatti, U., Carmona, C. J., & Simancas Trujillo, R. A. (2022). The nexus between CO2 emission, economic growth, trade openness: Evidences from middle-income trap countries. Frontiers in Environmental Science, 10, 1–16. https://doi.org/10.3389/fenvs.2022.938776

    Article  Google Scholar 

  37. Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A. K., & Prasad, M. (2022). Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–a systematic literature review. International Journal of Information Management Data Insights, 2(2), 100084. https://doi.org/10.1016/j.jjimei.2022.100084

    Article  Google Scholar 

  38. Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., Prasad, M., & Prakash, S. (2017). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580. https://doi.org/10.1109/JIOT.2017.2717704

    Article  Google Scholar 

  39. Trivedi, V., Prakash, S., & Ramteke, M. (2017). Optimized online control of MMA polymerization using fast multi-objective DE. Materials and Manufacturing Processes, 32(10), 1144–1151. https://doi.org/10.1080/10426914.2016.1257802

    Article  Google Scholar 

  40. Prakash, S., Trivedi, V., & Ramteke, M. (2016). An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor. International Journal of Systems Assurance Engineering and Management, 7, 299–315. https://doi.org/10.1007/s13198-016-0467-6

    Article  Google Scholar 

  41. Chen, Y., Zhong, J., Mumtaz, J., Zhou, S., & Zhu, L. (2023). An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line. Expert Systems with Applications, 229, 120600. https://doi.org/10.1016/j.eswa.2023.120600

    Article  Google Scholar 

  42. Hao, Y. (2023). Numerical simulation of regional air pollution characteristics based on meteorological factors and improved Elman neural network algorithm. Applied Nanoscience, 13(5), 3383–3391. https://doi.org/10.1007/s13204-021-02201-y

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have contributed equally to the work.

Corresponding author

Correspondence to Tuti Sandhya.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhya, T., Reddy, G.S. An Optimized Elman Neural Network for Contactless Palm-Vein Recognition Framework. Wireless Pers Commun 131, 2773–2795 (2023). https://doi.org/10.1007/s11277-023-10579-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10579-x

Keywords