Skip to main content

Advertisement

Log in

Design of High Gain Metasurface Antenna Using Hybrid African Vulture’s Optimization and Capuchin Search Algorithm for RF Energy Harvesting

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2023

This article has been updated

Abstract

In general, Metasurface Antennas (MSA) are designed to diminish the antenna shape by enhancing the operating band and directivity. As the efficiency decreases, the design complexity of MSA increases. In order to enhance the antenna design, a high-gain MSA is designed using the hybrid African Vulture's Optimization Algorithm (AVOA), and the Capuchin Search Algorithm (CapSA) is used for Radio Frequency (RF) energy harvesting. The dimensions of the designed antenna are \(1.66\lambda_{0} \times 1.25\lambda_{0} \times 0.02\lambda_{0}\) with a resonating frequency of 5 GHz. To design the high gain MSA, the proposed Hybrid African Vulture’s Optimization and Capuchin Search Algorithm (Hyb-AVOA-CapSA) is used to enhance the antenna parameters such as radiation efficiency, Bandwidth, gain, and return loss. Therefore, the proposed MSA design has achieved high efficiency and profit. Finally, the simulation has done on HFSS19 and ADS2020 version software; and evaluated using MATLAB. The proposed antenna gives a better efficiency of 70.12%, and resonate at 1.5 GHz of the axial ratio bandwidth at 5 GHz resonant frequency. The gain of the proposed antenna has increased from 6.86 to 7.6 dBi. While examining the comparative outcomes, the proposed approach has attained 22.4%, 23.7% high gain, and 18.85%, 12.6% lower return loss than the compared methods. Thus, the designed MSA is applied in RF energy harvesting applications because of its compact, low-profile, and simple structure. The Rectenna design uses a voltage doubler circuit at the receiver end and produces 5.55 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

  • 23 July 2023

    The original version of this article was revised: The affiliation of the second author was corrected.

  • 27 July 2023

    A Correction to this paper has been published: https://doi.org/10.1007/s11277-023-10677-w

References

  1. Wang, C., Han, Z., Liu, H., Wen, P., Wang, L., & Zhang, X. (2021). A novel single-feed filtering dielectric resonator antenna using slotline stepped-impedance resonator. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(11), 3426–3430.

    Google Scholar 

  2. Gao, G., Zhang, R. F., Geng, W. F., Meng, H. J., & Hu, B. (2020). Characteristic mode analysis of a nonuniform metasurface antenna for wearable applications. IEEE Antennas and Wireless Propagation Letters, 19(8), 1355–1359.

    Article  Google Scholar 

  3. Tang, J., Liu, H., & Yang, Y. (2020). Balanced dual-band superconducting filter using stepped-impedance resonators with high band-to-band isolation and wide stopband. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 131–135.

    Google Scholar 

  4. Li, K., Cai, Y. M., Wang, F., & Ren, Y. (2022). A low profile wideband pattern reconfigurable metasurface antenna. International Journal of RF and Microwave Computer-Aided Engineering, 32(3), e23026.

    Article  Google Scholar 

  5. Tang, J., Liu, H., & Yang, Y. (2020). Compact wide-stopband dual-band balanced filter using an electromagnetically coupled SIR pair with controllable transmission zeros and bandwidths. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11), 2357–2361.

    Google Scholar 

  6. Gao, K., Cao, X., Gao, J., Li, T., Yang, H., & Li, S. (2021). Low-RCS metasurface antenna array design with improved radiation performance using odd-and even-mode analysis. IEEE Antennas and Wireless Propagation Letters, 21(2), 421–425.

    Article  Google Scholar 

  7. Chen, Z., Song, Z., Liu, H., Liu, X., Yu, J., & Chen, X. (2020). A compact phase-controlled pattern-reconfigurable dielectric resonator antenna for passive wide-angle beam scanning. IEEE Transactions on Antennas and Propagation, 69(5), 2981–2986.

    Article  Google Scholar 

  8. You, L., Xu, J., Alexandropoulos, G. C., Wang, J., Wang, W., & Gao, X. (2022). Energy efficiency maximization of massive MIMO communications with dynamic metasurface antennas. IEEE Transactions on Wireless Communications, 22(1), 393–407.

    Article  Google Scholar 

  9. Su, Z. L., Xu, B. W., Zheng, S. Y., Liu, H. W., & Long, Y. L. (2019). High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 32–36.

    Google Scholar 

  10. Wang, Z., Li, C., & Yin, Y. (2020). A meta-surface antenna array decoupling (MAAD) design to improve the isolation performance in a MIMO system. IEEE Access, 8, 61797–61805.

    Article  Google Scholar 

  11. Chen, Z., Tian, J., Liu, H., Yu, J., & Chen, X. (2021). Novel pattern-diverse millimeter-wave antenna with broadband, high-gain, enhanced-coverage for energy-efficient unmanned aerial vehicle. IEEE Transactions on Vehicular Technology, 70(5), 4081–4087.

    Article  Google Scholar 

  12. Darvazehban, A., Rezaeieh, S. A., & Abbosh, A. M. (2020). Programmable metasurface antenna for electromagnetic torso scanning. IEEE access, 8, 166801–166812.

    Article  Google Scholar 

  13. Li, M., Wang, Z., Yin, W. Y., Li, E. P., & Chen, H. (2022). Controlling Asymmetric Retroreflection of Metasurfaces via Localized Loss Engineering. IEEE Transactions on Antennas and Propagation, 70(12), 11858–11866.

    Article  Google Scholar 

  14. Dawar, P., & Abdalla, M. A. (2021). Near-zero-refractive-index metasurface antenna with bandwidth, directivity and front-to-back radiation ratio enhancement. Journal of Electromagnetic Waves and Applications, 35(14), 1863–1881.

    Article  Google Scholar 

  15. Liu, S., Yang, D., Chen, Y., Sun, K., Zhang, X., & Xiang, Y. (2021). Low-profile broadband metasurface antenna under multimode resonance. IEEE Antennas and Wireless Propagation Letters, 20(9), 1696–1700.

    Article  Google Scholar 

  16. Zheng, Q., Guo, C., Ding, J., Fei, P., PourMohammadi, P., & Vandenbosch, G. A. (2023). Wideband low-RCS circularly polarized antenna with metasurface combining wave diffusion and polarization conversion. Journal of Electromagnetic Waves and Applications, 37(2), 207–218.

    Article  Google Scholar 

  17. Bodehou, M., González-Ovejero, D., Craeye, C., Maci, S., Huynen, I., & Martini, E. (2020). Power balance and efficiency of metasurface antennas. Scientific reports, 10(1), 17508.

    Article  Google Scholar 

  18. Nasser, S. S. S., & Chen, Z. N. (2021). Low-Profile Broadband Dual-Polarization Double-Layer Metasurface Antenna for 2G/3G/LTE Cellular Base Stations. IEEE Transactions on Antennas and Propagation, 70(1), 75–83.

    Article  Google Scholar 

  19. El Yousfi, A., Lamkaddem, A., Abdalmalak, K. A., & Vargas, D. S. (2021). Design of a broadband circularly-polarized single-layer metasurface antenna using CMA. In 2021 15th European Conference on Antennas and Propagation (EuCAP) (pp. 1–5). IEEE.

  20. Bodehou, M., Al Khalifeh, K., Jha, S. N., & Craeye, C. (2022). Direct numerical inversion methods for the design of surface wave-based metasurface antennas: Fundamentals, realizations, and perspectives. IEEE Antennas and Propagation Magazine, 64(4), 24–36.

    Article  Google Scholar 

  21. Liu, H., Tian, H., Liu, L., & Feng, L. (2021). Co-design of wideband filtering dielectric resonator antenna with high gain. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 1064–1068.

    Google Scholar 

  22. Liu, W. E., Chen, Z. N., & Qing, X. (2020). Dispersion-engineered wideband low-profile metasurface antennas. Frontiers of Information Technology & Electronic Engineering, 21(1), 27–38.

    Article  Google Scholar 

  23. Wang, J., Li, Y., Jiang, Z. H., Shi, T., Tang, M. C., Zhou, Z., & Qiu, C. W. (2020). Metantenna: When metasurface meets antenna again. IEEE Transactions on Antennas and Propagation, 68(3), 1332–1347.

    Article  Google Scholar 

  24. Alkurt, F. O., Unal, E., Palandoken, M., Abdulkarim, Y. I., Hasar, U. C., & Karaaslan, M. (2022). Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications. Wireless Networks, 29(1), 1–12.

    Google Scholar 

  25. Bakır, M., Karaaslan, M., Karadağ, F., Ünal, E., Akgöl, O., Alkurt, F. Ö., & Sabah, C. (2018). Metamaterial-based energy harvesting for GSM and satellite communication frequency bands. Optical Engineering, 57(8), 087110–087110.

    Article  Google Scholar 

  26. Alkurt, F. O., Altintas, O., Atci, A., Bakir, M., Unal, E., Akgol, O., & Sabah, C. (2018). Antenna based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8. Optical Engineering, 57(11), 113102–113102.

    Article  Google Scholar 

  27. Alkurt, F. O., Altintas, O., Ozakturk, M., Karaaslan, M., Akgol, O., Unal, E., & Sabah, C. (2020). Enhancement of image quality by using metamaterial inspired energy harvester. Physics Letters A, 384(1), 126041.

    Article  Google Scholar 

  28. Cavillot, J., Bodehou, M., & Craeye, C. (2022). Metasurface antennas design: Full-wave feeder modeling and far-field optimization. IEEE Transactions on Antennas and Propagation, 71(1), 39–49.

    Article  Google Scholar 

  29. Zheng, Q., Guo, C., Ding, J., Akinsolu, M. O., Liu, B., & Vandenbosch, G. A. (2022). A wideband low-RCS metasurface-inspired circularly polarized slot array based on AI-driven antenna design optimization algorithm. IEEE Transactions on Antennas and Propagation, 70(9), 8584–8589.

    Article  Google Scholar 

  30. Zhang, K., Soh, P. J., & Yan, S. (2022). Design of a compact dual-band textile antenna based on metasurface. IEEE Transactions on Biomedical Circuits and Systems, 16(2), 211–221.

    Article  Google Scholar 

  31. Imani, M. F., Gollub, J. N., Yurduseven, O., Diebold, A. V., Boyarsky, M., Fromenteze, T., Pulido-Mancera, L., Sleasman, T., & Smith, D. R. (2020). Review of metasurface antennas for computational microwave imaging. IEEE transactions on antennas and propagation, 68(3), 1860–1875.

    Article  Google Scholar 

  32. Lin, F. H., & Chen, Z. N. (2020). Resonant metasurface antennas with resonant apertures: Characteristic mode analysis and dual-polarized broadband low-profile design. IEEE Transactions on Antennas and Propagation, 69(6), 3512–3516.

    Article  Google Scholar 

  33. Yuan, L., Yu-Xuan, H., Zhan-Wei, L., Shu-Ting, C., Xiao-Ming, X., & Jing, G. (2020). Design of a compact wideband CP metasurface antenna. International Journal of RF and Microwave Computer-Aided Engineering, 30(10), e22332.

    Article  Google Scholar 

  34. Feng, B., He, X., & Cheng, J. C. (2020). Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory. IEEE Access, 8, 21589–21601.

    Article  Google Scholar 

  35. BAŞYİĞİT, İB., Genc, A., & Helhel, S. (2019). Effect of orientation of RF sources maintained within the enclosures on electrical shielding effectiveness performance. Turkish Journal of Electrical Engineering and Computer Sciences, 27(4), 3088–3097.

    Article  Google Scholar 

  36. Bai, H., Wang, G. M., & Wu, T. (2019). High-gain wideband metasurface antenna with low profile. IEEE Access, 7, 177266–177273.

    Article  Google Scholar 

  37. Efazat, S. S., Basiri, R., & Jam, S. (2020). Optimization based design of a wideband near zero refractive index metasurface for gain improvement of planar antennas in the terahertz band. Optical and Quantum Electronics, 52, 1–16.

    Article  Google Scholar 

  38. Yang, X., Hu, J., Ji, Y., Ge, L., & Zeng, X. (2020). Design of a metasurface antenna with pattern diversity. IEEE Antennas and Wireless Propagation Letters, 19(12), 2467–2471.

    Article  Google Scholar 

  39. Lan, G., Imani, M. F., Liu, Z., Manjarres, J., Hu, W., Lan, A. S., & Gorlatova, M. (2021). Metasense: Boosting RF sensing accuracy using dynamic metasurface antenna. IEEE Internet of Things Journal, 8(18), 14110–14126.

    Article  Google Scholar 

  40. Faenzi, M., González-Ovejero, D., & Maci, S. (2020). Flat gain broadband metasurface antennas. IEEE Transactions on Antennas and Propagation, 69(4), 1942–1951.

    Article  Google Scholar 

  41. Yurduseven, O., Lee, C., González-Ovejero, D., Ettorre, M., Sauleau, R., Chattopadhyay, G., & Chahat, N. (2020). Multibeam Si/GaAs holographic metasurface antenna at W-band. IEEE Transactions on Antennas and Propagation, 69(6), 3523–3528.

    Article  Google Scholar 

  42. Gu, L., Yang, W., Feng, W., Xue, Q., Meng, Q., & Che, W. (2020). Low-profile ultrawideband circularly polarized metasurface antenna array. IEEE Antennas and Wireless Propagation Letters, 19(10), 1714–1718.

    Article  Google Scholar 

  43. Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vinod Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The affiliation of the second author was corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.V., Sharma, D. Design of High Gain Metasurface Antenna Using Hybrid African Vulture’s Optimization and Capuchin Search Algorithm for RF Energy Harvesting. Wireless Pers Commun 132, 67–94 (2023). https://doi.org/10.1007/s11277-023-10583-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10583-1

Keywords

Navigation