Skip to main content
Log in

Secrecy Achievable Rate of Two-Way Illegitimate Full-Duplex Relay-Assisted NOMA with CCI

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the adverse effects of co-channel interference (CCI) on the secrecy achievable rate (SAR) performance of illegitimate decode-and-forward full-duplex two-way relaying in power-domain non-orthogonal multiple access network. So as to minimize the information leakage, the investigation considers that illegitimate relay terminals are affected by a limited number of friendly jammers. In an effort to minimize the system overhead, the investigation activates a single illegitimate relay terminal by selecting a relay, which has the minimum secrecy achievable rate and maximizing. Obtained results reveal that while the CCI has adverse effects on system SAR performance, the friendly jammer helps to enhance the system performance. Monte-Carlo-based extensive simulations verify the numerically obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

There is no data and material are used in the manuscript.

References

  1. “Cisco. (2019). The internet of everything. https://www.cisco.com/c/dam/en_us/about/business-insights/docs/ioevalue-at-stake-public-sector-analysis-faq.pdf.

  2. Ozduran, V., Cioffi, J. M., & Yarman, S. B., (2013). Opportunistic source-pair selection (OSPS) method for multiuser bi-directional wireless relaying networks. In 2013 IEEE 14th workshop on signal processing and advances in wireless communications (pp. 565–569).

  3. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technical conference (pp. 1–5).

  4. Cover, T. M. (1975). Some advances in broadcast channels. Advances in communication theory, San Francisco.

  5. Daemen, J., & Rijmen, V. (1999). “AES proposal: Rijndael,’.

  6. Rivest, R., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21, 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  7. “Fips-46: Data encryption standard (DES)., revised as fips 46-1:1988, fips 46-2:1993, fips 46-3:1999,” National Institute of Standards and Technology 1979.

  8. Triple DES Encryption. IBM. Retrieved 2010-05-17.

  9. Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  11. Laneman, J., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, W., & Liu, Y. (2021). On the performance of physical layer security in virtual full-duplex non-orthogonal multiple access system. EURASIP Journal on Wireless Communications and Networking, 137, 1–14.

    Google Scholar 

  13. Yuan, C., Tao, X., Li, N., Ni, W., Liu, R. P., & Zhang, P. (2019). Analysis on secrecy capacity of cooperative non-orthogonal multiple access with proactive jamming. IEEE Transactions on Vehicular Technology, 68(3), 2682–2696.

    Article  Google Scholar 

  14. Lv, L., Zhou, F., Chen, J., & Al-Dhahir, N. (2019). Secure cooperative communications with an untrusted relay: A NOMA-inspired jamming and relaying approach. IEEE Transactions on Information Forensics and Security, 14(12), 3191–3205.

    Article  Google Scholar 

  15. Ozduran, V. (2020). Leakage rate analysis with imperfect channel state information for cooperative nonorthogonal multiple access networks. International Journal of Communication Systems, 33(9), e4387. https://doi.org/10.1002/dac.4387

    Article  Google Scholar 

  16. Yu, C., Ko, H.-L., Peng, X., & Xie, W. (2019). Secrecy outage performance analysis for cooperative NOMA over Nakagami-m channel. IEEE Access, 7, 79866–79876.

    Article  Google Scholar 

  17. Le Anh, T., & Hong, I. P. (2021). Secrecy performance of a multi-NOMA-MIMO system in the UEH relaying network using the PSO algorithm. IEEE Access, 9, 2317–2331.

    Article  Google Scholar 

  18. Wang, Z., & Peng, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287.

    Article  Google Scholar 

  19. Van Nguyen, M.-S., & Do, D.-T. (2020). Evaluating secrecy performance of cooperative NOMA networks under existence of relay link and direct link. International Journal of Communication Systems, 33(6), e4284. https://doi.org/10.1002/dac.4284

    Article  Google Scholar 

  20. Li, D., Cao, Y., Tang, J., Chen, Y., Zhang, S., Zhao, N., & Ding, Z. (2021). Secrecy analysis for NOMA networks with a full-duplex jamming relay. In 2021 IEEE wireless communications and networking conference (WCNC) (pp. 1–6).

  21. Lei, H., Yang, Z., Park, K.-H., Ansari, I. S., Guo, Y., Pan, G., & Alouini, M.-S. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications, 67(9), 6282–6298.

    Article  Google Scholar 

  22. Abbasi, O., & Ebrahimi, A. (2017). Secrecy analysis of a NOMA system with full duplex and half duplex relay. In 2017 Iran workshop on communications and information theory (IWCIT) (pp. 1–6).

  23. Nayak, V. N., & Gurrala, K. K. (2021). Power allocation-assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers. ETRI Journal, 43(4), 758–768. https://doi.org/10.4218/etrij.2020-0084

    Article  Google Scholar 

  24. Guo, C., Zhao, L., Feng, C., Ding, Z., & Wang, H.-M. (2020). Secrecy performance of NOMA systems with energy harvesting and full-duplex relaying. IEEE Transactions on Vehicular Technology, 69(10), 12301–12305.

    Article  Google Scholar 

  25. Le, T. A., & Kong, H. Y. (2019). Secrecy analysis of a cooperative NOMA network using an EH untrusted relay. International Journal of Electronics, 106(6), 799–815. https://doi.org/10.1080/00207217.2019.1570554

    Article  Google Scholar 

  26. Cao, Y., Wang, S., Jin, M., Zhao, N., Xing, C., Chen, Y., & Ding, Z. (2020). Power optimization for enhancing secrecy of cooperative user relaying NOMA networks. IEEE Transactions on Vehicular Technology, 69(7), 8008–8012.

    Article  Google Scholar 

  27. Gong, C., Yue, X., Zhang, Z., Wang, X., & Dai, X. (2021). Enhancing physical layer security with artificial noise in large-scale NOMA networks. IEEE Transactions on Vehicular Technology, 70(3), 2349–2361.

    Article  Google Scholar 

  28. Tran, H. M., Le, D. T., Nguyen, B. C., Tran, N. X., & Kim, T. (2021). Secrecy outage performance of FD-NOMA relay system with multiple non-colluding eavesdroppers. IEEE Transactions on Vehicular Technology 1–1.

  29. Adamchik, V. S. & Marichev, O. I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE systems. Proceedings of Conference on ISSAC’90, Tokyo (pp. 212–224).

  30. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Tables of integrals (7th ed.). Series and Products. Elsevier Inc.

  31. Ozduran, V., Yarman, B. S., & Cioffi, J. M. (2016). Impact of channel estimation error on physical layer security in dual-hop half, full-duplex two-way wireless relaying networks. In 2016 IEEE conference on computer communications workshops (pp. 308–313).

  32. Ozduran, V., Yarman, B. S., & Cioffi, J. M. (2016). Feedback delay effects on physical layer security in a dual-hop half/full-duplex bi-directional wireless relaying networks. In In 2016 IEEE Globecom Workshops (pp. 1–7).

  33. Wolfram. (2017). The Wolfram Functions Site [Online] Available: http://functions.wolfram.com/07.34.21.0081.01.

  34. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  35. Miranda, J., Abrishambaf, R., Gomes, T., Gonçalves, P., Cabral, J., Tavares, A., & Monteiro, J. (2013). Path loss exponent analysis in wireless sensor networks: Experimental evaluation. In 2013 11th IEEE international conference on industrial information (pp. 54–58).

  36. Rappaport, T. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ, USA: Prentice Hall PTR.

  37. Rodríguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Performance of full-duplex AF relaying in the presence of residual self-interference. IEEE Journal on Selected Areas in Communications, 32(9), 1752–1764.

    Article  Google Scholar 

  38. Yang, L., Qaraqe, K., Serpedin, E., & Alouini, M.-S. (2013). Performance analysis of amplify-and-forward two-way relaying with co-channel interference and channel estimation error. IEEE Transactions on Communications, 61(6), 2221–2231.

    Article  Google Scholar 

  39. Papoulis, A., & Pillai, U. (2001). Probability, random variables and stochastic processes, McGraw-Hill, 11.

Download references

Funding

No funding is received.

Author information

Authors and Affiliations

Authors

Contributions

I am a single author in the manuscript.

Corresponding author

Correspondence to Volkan Ozduran.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozduran, V. Secrecy Achievable Rate of Two-Way Illegitimate Full-Duplex Relay-Assisted NOMA with CCI. Wireless Pers Commun 132, 865–888 (2023). https://doi.org/10.1007/s11277-023-10640-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10640-9

Keywords

Navigation