Skip to main content
Log in

Deep Learning Assisted Transceiver Design Methods for Multisource and Multidestination AF Relay Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article studies transceiver design methods for multiple-source and multiple-destination communication systems via an amplify-and-forward relay. Specifically, sum mean-square-error (MSE) minimizing source power allocation schemes, a relay beamforming matrix, and destination filter design methods are developed. After formulating the tractable sum-MSE minimization problem by introducing an auxiliary variable, a block-coordinate-descent-based algorithm is proposed to alternately optimize each transceiver coefficients of source, relay, and destination nodes. Subsequently, deep learning (DL)-assisted design methods are proposed to address the drawbacks of iterative algorithms. Exploiting the structure of the optimum relay beamformer, the proposed DL-based methods return only a single parameter to construct the relay beamforming matrix as well as the transceiver coefficients for the source and destination nodes, thereby, efficiently implementing the deep neural network of the proposed scheme. The effectiveness of the proposed methods was verified through numerical simulations. In particular, without iterative calculations, the DL-based schemes show almost identical performance to that of the optimum methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data supporting this study are not publicly available due to legal and commercial reasons.

Notes

  1. For spatial multiplexing with sufficient degree of freedom, it is assumed that \(N_r \ge K\).

  2. Note that the accuracy of the channel estimation and CSI sharing among nodes affects the system performances, and thus the joint optimization of channel-acquisition-related processes and multi-antenna transceiver schemes is a worthy extension for further works.

  3. The function \(f({\overline{\lambda }}_r)\) is non-increasing function over \({\overline{\lambda }}_r\) and thus the optimum relay filter always utilizes the full power of \(P_r\)

  4. The function \(\xi (x)\) is non-increasing because \(\frac{\partial \xi (x)}{\partial x}<0.\)

  5. As mentioned in the previous section, this will be presented in the next section.

References

  1. Liu, Y., & Petropulu, A. P. (2011). On the sumrate of amplify-and-forward relay networks with multiple source-destination pairs. IEEE Transactions on Wireless Communications, 10, 3732–3742.

    Article  Google Scholar 

  2. Truong, K. T., Sartori, P., & Heath, R. W. (2013). Cooperative algorithms for MIMO amplify-and-forward relay networks. IEEE Transactions on Signal Processing, 61, 1272–1287.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nguyen, K. X., Rong, Y., & Nordholm, S. (2015). MMSE-based transceiver design algorithms for interference MIMO relay systems. IEEE Transactions on Wireless Communications, 14, 6414–6424.

    Article  Google Scholar 

  4. Shin, J. (2021). MMSE filter design for multi-source and multi-destination MIMO amplify-and-forward relay systems. Wireless Personal Communications, 3, 2057–2072.

    Article  Google Scholar 

  5. Sanguinetti, L., D’Amico, A. A., & Rong, Y. (2012). A tutorial on the optimization of amplify-and-forward MIMO relay systems. IEEE Journal on Selected Areas in Communications, 30, 1331–1346.

    Article  Google Scholar 

  6. Zarifi, K., Ghrayeb, A., & Affes, S. (2011). Jointly optimal source power control and relay matrix design in multipoint-to-multipoint cooperative communication networks. IEEE Transactions on Signal Processing, 59, 4313–4330.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fadel, M., El-Keyi, A., & Sultan, A. (2012). QoS-constrained multiuser peer-to-peer amplify-and-forward relay beamforming. IEEE Transactions on Signal Processing, 60, 1397–1408.

    Article  MathSciNet  MATH  Google Scholar 

  8. Shin, J. (2020). Min-SINR-Maximizing wireless-powered AF relay for multisource and multidestination networks. Wireless Personal Communications, 3, 1785–1793.

    Google Scholar 

  9. Zhang, X., Guo, D., & Guo, K. (2018). Secure performance analysis for multi-pair AF relaying massive MIMO systems in ricean channels. IEEE Access, 6, 57708–57720.

    Article  Google Scholar 

  10. Zhang, X., Guo, D., An, K., Liang, X., & Ma, W. (2019). Secure transmission in multi-pair AF relaying massive MIMO networks against active pilot spoofing attacks. IEEE Access, 7, 3547–3560.

    Article  Google Scholar 

  11. Shin, J. (2020). Per-antenna power constrained transceiver design for MIMO multisource and multidestination amplify-and-forward relay systems. Wireless Personal Communications, 112, 1503–1515.

    Article  Google Scholar 

  12. Grant, M., & Boyd, S. (2010). Cvx: Matlab software for disciplined convex programming (Webpage and Software), [Online]. Available: http://cvxr.com/cvx

  13. Qin, Z., Ye, H., Li, G., & Juang, B. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26, 93–99.

    Article  Google Scholar 

  14. Sohrabi, F., Attiah, K., & Yu, W. (2021). Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO. IEEE Transactions on Wireless Communications, 20, 4044–4057.

    Article  Google Scholar 

  15. Jang, J., Lee, H., Kim, I., & Lee, I. (2022). Deep learning for multi-user MIMO systems: Joint design of pilot, limited feedback, and precoding. IEEE Transactions on Communications, 70, 7279–7293.

    Article  Google Scholar 

  16. Xia, W., Zheng, G., Zhu, Y., Zhang, J., Wang, J., & Petropulu, A. P. (2020). A deep learning framework for optimization of MISO downlink beamforming. IEEE Transactions on Communications, 68, 1866–1880.

    Article  Google Scholar 

  17. Huang, H., Peng, Y., Yang, J., Xia, W., & Gui, G. (2020). Fast beamforming design via deep learning. IEEE Transactions on Vehicular Technology, 69, 1065–1069.

    Article  Google Scholar 

  18. Kim, J., Lee, H., Hong, S., & Park, S. (2020). Deep learning methods for universal MISO beamforming. IEEE Wireless Communications Letters, 9, 1894–1898.

    Article  Google Scholar 

  19. Gupta, A., Sellathurai, M., & Ratnarajah, T. (2023). End-to-end learning-based full-duplex amplify-and-forward relay networks. IEEE Transactions on Communications, 71, 199–213.

    Article  Google Scholar 

  20. Bertsekas, D. P. (2008). Nonlinear Programming (2nd ed.). USA: Athena Scientific.

    Google Scholar 

  21. Chong, E., & Zak, S. (2001). An Introduction to Optimization. New York: Wiley.

    MATH  Google Scholar 

  22. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  23. 3GPP TS 38.201 (5G, NR, Physical layer, and General description), version 15.0.0, Release 15, ETSI (2018)

  24. Kingma, D., & J. Ba, Adam: (2015). A method for stochastic optimization. In International conference on learning representations (ICLR), pp. 1-41

  25. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift, In International conference on machine learning (ICML), pp. 448-456

Download references

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonwoo Shin.

Ethics declarations

Conflict of interest

The author declares that there is no funding for this study nor any conflict of interest. The data that support the findings of this study are available on reasonable request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of Optimal Relay Filter \({{\textbf {F}}}\)

For the given source and destination filters, the optimization problem (10) to derive \({\textbf {F}}\) is constrained only by (10.2) Thus, the Lagrangian function can be written as follows:

$$ \begin{aligned} {\mathcal{L}}({\mathbf{F}},\lambda _{r} ) = & \sum\limits_{{i = 1}}^{K} \{ {\mathbf{g}}_{i}^{*} d_{i}^{*} d_{i} {\mathbf{g}}_{i}^{T} {\mathbf{Fh}}_{i} \tilde{p}_{i} {\mathbf{h}}_{i}^{H} {\mathbf{F}}^{H} - \sqrt {\tilde{p}} _{i} {\mathbf{h}}_{i} d_{i} {\mathbf{g}}_{i}^{T} {\mathbf{F}} \\ & \;\;\;\; - \sqrt {\tilde{p}} _{i} {\mathbf{g}}_{i}^{*} d_{i}^{*} {\mathbf{h}}_{i}^{H} {\mathbf{F}}^{H} + {\mathbf{I}}_{{N_{r} }} \;\;\sigma _{{n_{r} }}^{2} \alpha _{s}^{{ - 2}} {\mathbf{g}}_{i}^{*} d_{i}^{*} d_{i} {\mathbf{g}}_{i}^{T} {\mathbf{FF}}^{H} \\ & \;\;\;\; + \sigma _{{n_{i} }}^{2} \alpha _{s}^{{ - 2}} d_{i}^{*} d_{i} {\mathbf{I}}_{{N_{r} }} + \sum\limits_{{k \ne i}}^{K} {{\mathbf{g}}_{k}^{*} } d_{k}^{*} d_{k} {\mathbf{g}}_{k}^{T} {\mathbf{Fh}}_{i} \tilde{p}_{i} {\mathbf{h}}_{i}^{H} {\mathbf{F}}^{H} \} \quad \\ & \;\;\;\; + \lambda _{r} ({\text{Tr}}({\mathbf{F}}(\sum\limits_{{i = 1}}^{H} {{\mathbf{h}}_{i} } \tilde{p}_{i} {\mathbf{h}}_{i}^{H} + \sigma _{{n_{r} }}^{2} {\mathbf{I}}_{{N_{r} }} ){\mathbf{F}}^{H} ) - P_{r} ), \\ \end{aligned} $$
(A.1)

where \(\lambda _r\) is the Lagrange multiplier for the relay-node power constraint (10.2). With the Karush (Kuhn) condition [22] and denoting \(\alpha _s^2 \lambda _r = {\overline{\lambda }_r}\), the optimum relay filter is obtained by

$$\begin{aligned} {{\textbf {F}}} = \alpha _s \Big ( \sum _{k=1} {{\textbf {g}}}_{k}^{*} d_k^* d_k {{\textbf {g}}}_{k}^{T} + \overline{\lambda }_r {{\textbf {I}}}_{N_r}\Big )^{-1} \Big ( \sum _{j=1}^K {\sqrt{p_j}} {{\textbf {g}}}_{j}^{*} d_j^* {{\textbf {h}}}_j^H \Big ) \Big ( \sum _{i=1}^K {{\textbf {h}}}_i p_i {{\textbf {h}}}_i^H + \sigma _{n_r}^2 {{\textbf {I}}}_{N_r} \Big )^{-1} \end{aligned}$$
(A.2)

Appendix 2: Derivation of optimal source node power allocation scheme

The Lagrangian function of the problem (14) is represented by

$$\begin{aligned}&\mathcal {L}({\tilde{p}}_k, \alpha _s, \lambda _{s,k}, \lambda _{r}^{(s)}) \nonumber \\&= d_k {{\textbf {g}}}_k^T {{\textbf {F}}} {{\textbf {h}}}_k {\tilde{p}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H {{\textbf {g}}}_k^* d_k^* - d_k {{\textbf {g}}}_k^T {{\textbf {F}}} {{\textbf {h}}}_k {\sqrt{\tilde{p}}_k} - {\sqrt{\tilde{p}}_k}{{\textbf {h}}}_k^H {{\textbf {F}}}^H {{\textbf {g}}}_k^* d_k^* + 1 \nonumber \\&\;\;\; + \alpha _s^{-2} \sigma _{n_r}^2 d_k {{\textbf {g}}}_k^T {{\textbf {F}}} {{\textbf {F}}}^H {{\textbf {g}}}_k^* d_k^* + \alpha _s^{-2} \sigma _{n_k}^2 d_k d_k^* + \sum _{i\ne k}^{K} d_i {{\textbf {g}}}_i^T {{\textbf {F}}} {{\textbf {h}}}_k {\tilde{p}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H {{\textbf {g}}}_i^* d_i^* \nonumber \\&\;\;\; + \lambda _{s,k}(\alpha _s^2{\tilde{p}}_k - P_{max} ) + \lambda _{r}^{(s)}(\alpha _s^2 \text {Tr}({{\textbf {F}}} {{\textbf {h}}}_k {\tilde{p}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H)) \end{aligned}$$
(B.1)

The KKT conditions for problem (14) are expressed as follows:

  1. (i)

    Stationarity: \(\frac{\partial \mathcal {L}}{\partial {\tilde{p}}_k }= 0\) and \(\frac{\partial \mathcal {L}}{\partial \alpha _s }= 0\)

  2. (ii)

    Primal Feasibility:(1) \(\alpha _s^2 {\tilde{p}}_k - P_{max} \le 0 \) and (2) \(\alpha _s^2 \text {Tr}({{\textbf {F}}} {{\textbf {h}}}_k {\tilde{p}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H) - P_{r,k} \le 0\)

  3. (iii)

    Dual Feasibility: \(\lambda _{s,k}\ge 0\) and \(\lambda _{r}^{(s)}\ge 0\). Accordingly, it can be obtained that \({\overline{\lambda }}_{s,k} = \alpha _s^2\lambda _{s,k} \ge 0\) and \({\overline{\lambda }}_{r}^{(s)} = \alpha _s^2 \lambda _{r}^{(s)}\ge 0\)

  4. (iv)

    Complementary Slackness Condition (CSC): (1) \({\overline{\lambda }}_{s,k} (\alpha _s^2 {\tilde{p}}_k - P_{max} )=0\) and (2) \({\overline{\lambda }}_{r}^{(s)}( \alpha _s^2 \text {Tr}({{\textbf {F}}} {{\textbf {h}}}_k {\tilde{p}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H) - P_{r,k} )=0\)

With the stationary condition \(\frac{\partial \mathcal {L}}{\partial {\tilde{p}}_k }= 0\), the power allocation of \(\textsf {S}_k\) can be written as

$$\begin{aligned} {\tilde{p}}_{k}({\overline{\lambda }_{s,k}},{\overline{\lambda }}_{r}^{(s)}) = \Big ( \frac{ \text {Re}(d_k {{\textbf {g}}}^T {{\textbf {F}}} {{\textbf {h}}}_k ) }{ \sum _{i}^{K} d_i {{\textbf {g}}}_i^T {{\textbf {F}}} {{\textbf {h}}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H {{\textbf {g}}}_i^* d_i^* + {\overline{\lambda }_{s,k}} + {\overline{\lambda }}_{r}^{(s)} \text {Tr}({{\textbf {F}}}{{\textbf {h}}}_k {{\textbf {h}}}_k^H {{\textbf {F}}}^H )} \Big )^2 \end{aligned}$$
(B.2)

From \(\frac{\partial \mathcal {L}}{\partial \alpha _s }= 0\) in (i) and (iv), we obtain \(\phi _k = \overline{\lambda }_{s,k} P_{max} + {\overline{\lambda }}_{r}^{(s)} P_{r,k}\); thus, \(\frac{\phi _k - \overline{\lambda }_{s,k} P_{max}}{P_{r,k}}\) can be replaced by \({\overline{\lambda }}_{r}^{(s)}\). In addition, from the primal and dual feasibilities, \({\overline{\lambda }}_{s,k}\) and \({\overline{\lambda }}_{r}^{(s)}\) are bounded by \(0 \le {\overline{\lambda }}_{s,k} \le \frac{\phi _k}{P_{max}}\) and \(0 \le {\overline{\lambda }}_{r}^{(s)} \le \frac{\phi _k}{P_{r,k}}\), respectively. Based on the bounds of \({\overline{\lambda }}_{s,k}\) and \({\overline{\lambda }}_{r}^{(s)}\), the power allocation of (B.2) can be classified as follows:

  1. (i)

    \({\overline{\lambda }}_{s,k}=0\): (B.2) is obtained by \(\tilde{p}_k({\overline{\lambda }_{s,k}}=0,{\overline{\lambda }}_{r}^{(s)}=\frac{\phi _k}{P_{r,k}})\) and \(\alpha _s\) is determined by the CSC (2) and satisfying the Primal Feasibility (1) with a strict inequality.

  2. (ii)

    \({\overline{\lambda }}_{s,k}=\frac{\phi _k}{P_{max}}\): (B.2) is decided by \(\tilde{p}_k({\overline{\lambda }_{s,k}}=\frac{\phi _k}{P_{max}},{\overline{\lambda }}_{r}^{(s)}=0)\) and \(\alpha _s\) is determined by the CSC (1) and satisfying the Primal Feasibility (2) with a strict inequality.

  3. (iii)

    \(0<{\overline{\lambda }}_{s,k}<\frac{\phi _k}{P_{max}}\): (B.2) is represented by function of \({\overline{\lambda }_{s,k}}\), i.e.,\( {\tilde{p}}_{k}({\overline{\lambda }_{s,k}},{\overline{\lambda }}_{r}^{(s)}= \frac{\phi _k - \overline{\lambda }_{s,k} P_{max}}{P_{r,k}})\) and \({\overline{\lambda }_{s,k}}\) is chosen to satisfy both CSC (1) and (2) using the bisection method. In addition, the value of \(\alpha _s\) is determined by either CSC (1) or CSC (2).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J. Deep Learning Assisted Transceiver Design Methods for Multisource and Multidestination AF Relay Systems. Wireless Pers Commun 132, 2905–2922 (2023). https://doi.org/10.1007/s11277-023-10748-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10748-y

Keywords

Navigation