Skip to main content
Log in

Joint Beamforming Design for RIS-aided AmBC-enabled MISO NOMA Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the context of “beyond 5 G" (B5G) mobile communication, a better quality of service (QoS) with a minimum power budget is one of the prime requirements. To improve QoS or sum rate, utilizing reconfigurable intelligent surfaces (RIS) in a non-orthogonal multiple access (NOMA) network is an effective approach. This paper focuses on a RIS-assisted backscatter-enabled NOMA network where the base station (BS) has to serve a backscatter device (BD) and dead-zone users simultaneously by achieving the maximum possible sum rate in a given power budget. With the help of joint optimization at BS, RIS, and BD, the beamforming vectors, RIS phase shift matrix (PSM), and power splitting (PS) ratio, respectively, are optimized such that the user’s QoS and BD’s energy harvesting constraints can be achieved for a given power constraint while increasing the sum rate for dead zone users. Particularly, the beamforming vectors and the phases of the RIS elements are alternately optimized using a lower bound, semidefinite relaxation (SDR), and Gaussian randomization techniques until they reach convergence. According to simulation results, the proposed scheme (RIS-BD-NOMA) always performs better than the baseline schemes, RIS-NOMA with random phases, and RIS-NOMA with optimized phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The required data used in the current study can be reproduced using MATLAB version R2022a.

References

  1. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  2. Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y.-J.A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84–90.

    Article  Google Scholar 

  3. Zhang, W., Qin, Y., Zhao, W., Jia, M., Liu, Q., He, R., & Ai, B. (2019). A green paradigm for internet of things: Ambient backscatter communications. China Communications, 16(7), 109–119.

    Article  Google Scholar 

  4. Van Huynh, N., Hoang, D. T., Lu, X., Niyato, D., Wang, P., & Kim, D. I. (2018). Ambient backscatter communications: A contemporary survey. IEEE Communications Surveys & Tutorials, 20(4), 2889–2922.

    Article  Google Scholar 

  5. Wu, W., Wang, X., Hawbani, A., Yuan, L., & Gong, W. (2022). A survey on ambient backscatter communications: Principles, systems, applications, and challenges. Computer Networks, 216, 109235.

    Article  Google Scholar 

  6. Zhuang, Y., Li, X., Ji, H., & Zhang, H. (2022). Exploiting intelligent reflecting surface for energy efficiency in ambient backscatter communication-enabled NOMA networks. IEEE Transactions on Green Communications and Networking, 6(1), 163–174.

    Article  Google Scholar 

  7. Xu, Y., Qin, Z., Gui, G., Gacanin, H., Sari, H., & Adachi, F. (2021). Energy efficiency maximization in NOMA enabled backscatter communications With QoS guarantee. IEEE Wireless Communications Letters, 10(2), 353–357.

    Article  Google Scholar 

  8. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  9. Wu, Qingqing, & Zhang, Rui. (2019). Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Transactions on Wireless Communications, 18(11), 5394–5409.

    Article  Google Scholar 

  10. Huang, C., Alexandropoulos, G. C., Zappone, A., Debbah, M., & Yuen, C. (2018). Energy efficient multi-user MISO communication using low resolution large intelligent surfaces. In 2018 IEEE Globecom workshops (GC Wkshps) (pp. 1–6).

  11. Jian, M., Alexandropoulos, G. C., Basar, E., Huang, C., Liu, R., Liu, Y., & Yuen, C. (2022). Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intelligent and Converged Networks, 3(1), 1–32.

    Article  Google Scholar 

  12. Mu, X., Liu, Y., Guo, L., Lin, J., & Schober, R. (2021). Joint deployment and multiple access design for intelligent reflecting surface assisted networks. IEEE Transactions on Wireless Communications, 20(10), 6648–6664.

    Article  Google Scholar 

  13. Björnson, Emil, Özdogan, Özgecan., & Larsson, Erik G. (2020). Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wireless Communications Letters, 9(2), 244–248.

    Article  Google Scholar 

  14. Zhu, J., Huang, Y., Wang, J., Navaie, K., & Ding, Z. (2021). Power efficient IRS-assisted NOMA. IEEE Transactions on Communications, 69(2), 900–913.

    Article  Google Scholar 

  15. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381.

    Article  Google Scholar 

  16. Chen, Z., Ding, Z., Dai, X., & Zhang, R. (2017). An optimization perspective of the superiority of NOMA compared to conventional OMA. IEEE Transactions on Signal Processing, 65(19), 5191–5202.

    Article  MathSciNet  Google Scholar 

  17. Singh, S. K., & Gandhi, A. S. (2019). Preamble based timing offset estimation and correction in OFDM assisted massive MIMO systems in the presence of inter-user-interference. Wireless Personal Communications, 106, 1325–1338.

    Article  Google Scholar 

  18. Singh, S. K., Rathkanthiwar, A. P., & Gandhi, A. S. (2017). New algorithm for time and frequency synchronization in MIMO-OFDM systems. Wireless Personal Communications, 96, 3283–3295.

    Article  Google Scholar 

  19. Zou, L., Zhang, D., Cui, M., Zhang, G., & Wu, Q. (2022). IRS-assisted covert communication with eavesdropper’s channel and noise information uncertainties. Physical Communication, 53, 101662.

    Article  Google Scholar 

  20. Zamanian, S. F., & Razavizadeh, S. M. (2022). 3D beamforming in intelligent reflecting surface (IRS)-assisted multi-user cognitive radio networks. Physical Communication, 56, 101951.

    Article  Google Scholar 

  21. Liu, Q., Sun, S., Wang, H., & Zhang, S. (2021). 6G green IoT network: Joint design of intelligent reflective surface and ambient backscatter communication. Wireless Communications and Mobile Computing, 2021, 1–10.

    Google Scholar 

  22. Fang, F., Xu, Y., Pham, Q.-V., & Ding, Z. (2020). Energy-efficient design of IRS-NOMA networks. IEEE Transactions on Vehicular Technology, 69(11), 14088–14092.

    Article  Google Scholar 

  23. Jiao, S., Fang, F., Zhou, X., & Zhang, H. (2020). Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA. Journal of Communications and Information Networks, 5(2), 138–149.

    Article  Google Scholar 

  24. Wang, J., & Li, J. (2022). Energy efficiency maximization for IRS-assisted NOMA networks. Physical Communication, 52, 101647.

    Article  Google Scholar 

  25. Basharat, S., Pervaiz, H., Hassan, S. A., Ansari, R. I., Jung, H., Dev, K., & Huang, G. (2022). Intelligent radio resource management in reconfigurable IRS-enabled NOMA networks. Physical Communication, 53, 101744.

    Article  Google Scholar 

  26. Mu, X., Liu, Y., Guo, L., Lin, J., & Al-Dhahir, N. (2020). Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization. IEEE Transactions on Wireless Communications, 19(10), 6884–6898.

    Article  Google Scholar 

  27. Pan, C., Ren, H., Wang, K., Elkashlan, M., Nallanathan, A., Wang, J., & Hanzo, L. (2020). Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 38(8), 1719–1734.

    Article  Google Scholar 

  28. Yaswanth, J., Singh, S. K., & Singh, K. (2022). Design of power-efficient SWIPT-enabled RIS-assisted MIMO communications. In IEEE global communications conference (GLOBECOM) (pp. 3350–3355).

  29. Yaswanth, J., Singh, S. K., Singh, K., & Flanagan, M. F. (2023). Energy-efficient beamforming design for RIS-Aided MIMO downlink communication with SWIPT. IEEE Transactions on Green Communications and Networking, 7(3), 1164–1180.

    Article  Google Scholar 

  30. Li, Z., Chen, W., Wu, Q., Wang, K., & Li, J. (2022). Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks. IEEE Transactions on Wireless Communications, 21(3), 2019–2033.

    Article  Google Scholar 

  31. Luo, Z.-Q., Ma, W.-K., So, A.M.-C., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.

    Article  Google Scholar 

  32. Grant, M., & Boyd, S. (2014). CVX: MATLAB software for disciplined convex programming. CVX Research, Inc.

    Google Scholar 

  33. Alavi, F., Cumanan, K., Ding, Z., & Burr, A. G. (2018). Beamforming techniques for nonorthogonal multiple access in 5G cellular networks. IEEE Transactions on Vehicular Technology, 67(10), 9474–9487.

    Article  Google Scholar 

  34. Li, B., Si, F., Han, D., & Wu, W. (2022). IRS-aided SWIPT systems with power splitting and artificial noise. China Communications, 19(4), 108–120.

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RKT and ASG—contributed equally to this research article. RKT—was responsible for the design and implementation of the experiments, while ASG—contributed to the theoretical analysis and manuscript preparation. Both authors discussed the results and made significant contributions to the interpretation of the findings and the final manuscript.

Corresponding author

Correspondence to Raj Kumar Thenua.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

This article does not contain any studies with human participantsor animals performed by any of the authors.

Consent for publication

Consent was obtained for publication from all relevant individuals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of (13b)

Using (9a), (9b), and assumptions made in Sect. 3.1.

$$\begin{aligned} R_1+R_2^1= & {} \log _2\left( 1+\frac{|\mathbf{h_{BU_1}^H w_1}|^2}{\sigma ^2}\right) +\log _2\left( 1+\frac{|\mathbf{h_{BU_1}^H w_2}|^2}{|\mathbf{h_{BU_1}^H w_1}|^2+\sigma ^2}\right) \nonumber \\= & {} \log _2\left( {\sigma ^2+|\mathbf{h_{BU_1}^H w_1}|^2}\right) -\log _2(\sigma ^2)+\log _2\left( {|\mathbf{h_{BU_1}^H w_1}|^2+\sigma ^2+|\mathbf{h_{BU_1}^H w_2}|^2}\right) \nonumber \\{} & {} -\log _2\left( |\mathbf{h_{BU_1}^H w_1}|^2+\sigma ^2\right) \nonumber \\= & {} \log _2 \left( 1+\frac{|\mathbf{h_{BU_1}^H w_1}|^2+|\mathbf{h_{BU_1}^H w_2}|^2}{\sigma ^2} \right) \end{aligned}$$
(20)

The constraint (12b) can be rewritten as,

$$\begin{aligned}{} & {} \log _2 \left( 1+\frac{|\mathbf{h_{BU_1}^H w_1}|^2+|\mathbf{h_{BU_1}^H w_2}|^2}{\sigma ^2} \right) \ge t_1 \end{aligned}$$
(21)
$$\begin{aligned}{} & {} \left( \frac{|\mathbf{h_{BU_1}^H w_1}|^2+|\mathbf{h_{BU_1}^H w_2}|^2}{\sigma ^2} \right) \ge 2^{t_1}-1 \end{aligned}$$
(22)

After introducing a slack variable \(t_2\), the constraint (12b) is converted as

$$\begin{aligned} \left( \frac{|\mathbf{h_{BU_1}^H w_1}|^2+|\mathbf{h_{BU_1}^H w_2}|^2}{\sigma ^2} \right) \ge t_2 \end{aligned}$$
(23)

where \(t_2=2^{t_1}-1\).

Now the constraint (12c) can be converted as

$$\begin{aligned} R_1+R_2^2= & {} \log _2\left( 1+\frac{|\mathbf{h_{BU_1}^H w_1}|^2}{\sigma ^2}\right) + \log _2\left( 1+\frac{|\mathbf{h_{BU_2}^H w_2}|^2}{|\mathbf{h_{BU_2}^H w_1}|^2+\sigma ^2}\right) \nonumber \\= & {} \log _2\left( \frac{\sigma ^2+|\mathbf{h_{BU_1}^H w_1}|^2}{\sigma ^2} \right) + \log _2\left( \frac{|\mathbf{h_{BU_2}^H w_1}|^2+\sigma ^2+|\mathbf{h_{BU_2}^H w_2}|^2}{|\mathbf{h_{BU_2}^H w_1}|^2+\sigma ^2} \right) \end{aligned}$$
(24)

It is assumed that near user \(U_1\) has strong channel conditions than far user \(U_2\) i.e.

$$\begin{aligned} |\mathbf{h_{BU_1}^H w_1}|^2 \ge |\mathbf{h_{BU_2}^H w_1}|^2 \end{aligned}$$

if we consider lower bound, i.e. \(|\mathbf{h_{BU_1}^H w_1}|=|\mathbf{h_{BU_2}^H w_1}|\), Eq. (24) reduces as

$$\begin{aligned} R_1+R_2^2=\log _2 \left( 1+\frac{|\mathbf{h_{BU_2}^H w_1}|^2+|\mathbf{h_{BU_2}^H w_2}|^2}{\sigma ^2} \right) \end{aligned}$$
(25)

When we use (25) in (12c) and use the slack variable \(t_2\), (12c) is converted as

$$\begin{aligned} \left( \frac{|\mathbf{h_{BU_2}^H w_1}|^2+|\mathbf{h_{BU_2}^H w_2}|^2}{\sigma ^2} \right) \ge t_2 \end{aligned}$$
(26)

Therefore, constraints in (12b) & (12c) can be converted into (13b) as shown. The proof is completed. \(\blacksquare\)

1.2 Proof of (17b)

Using (9a), (9b), and assumptions made in Sect. 3.2.

$$\begin{aligned} R_1+R_2^1= & {} \log _2\left( 1+\frac{|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2)}{\sigma ^2}\right) \nonumber \\{} & {} +\log _2\left( 1+\frac{|\mathbf{u^H b_{1,2}}+c_1\mathbf{u^H b_{b,2}}|^2)}{|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2+\sigma ^2}\right) \nonumber \\= & {} \log _2\left( \frac{\sigma ^2+|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2)}{\sigma ^2}\right) \nonumber \\{} & {} +\log _2\left( \hspace{-1mm}\frac{|\mathbf{u^H b_{1,1}}\hspace{-1mm}+c_1\mathbf{u^H b_{b,1}}|^2+\sigma ^2\hspace{-1mm}+|\mathbf{u^H b_{1,2}}+\hspace{-1mm}c_1\mathbf{u^H b_{b,2}}|^2)}{|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2+\sigma ^2}\hspace{-1mm}\right) \nonumber \\= & {} \log _2 \hspace{-1mm}\left( \hspace{-1mm}1+\frac{|\mathbf{u^H b_{1,1}}\hspace{-1mm}+c_1\mathbf{u^H b_{b,1}}|^2\hspace{-1mm}+|\mathbf{u^H b_{1,2}}\hspace{-1mm}+c_1\mathbf{u^H b_{b,2}}|^2)}{\sigma ^2} \hspace{-1mm}\right) \end{aligned}$$
(27)

The constraint (16b) is rewritten as

$$\begin{aligned} \log _2 \hspace{-1mm}\left( \hspace{-1mm}1+\frac{|\mathbf{u^H b_{1,1}}\hspace{-1mm}+c_1\mathbf{u^H b_{b,1}}|^2\hspace{-1mm}+|\mathbf{u^H b_{1,2}}\hspace{-1mm}+c_1\mathbf{u^H b_{b,2}}|^2)}{\sigma ^2}\hspace{-1mm} \right) \ge q_1 \end{aligned}$$
(28)

After introducing a slack variable \(q_2\), (28) converted into (29), which is the required conversion corresponding to constraint (16b).

$$\begin{aligned} \left( \frac{|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2+|\mathbf{u^H b_{1,2}}+c_1\mathbf{u^H b_{b,2}}|^2)}{\sigma ^2}\right) \ge q_2 \end{aligned}$$
(29)

where \(q_2=2^{q_1}-1\).

The constraint (16c) can be rewritten as

$$\begin{aligned} R_1+R_2^2= & {} \log _2\left( 1+\frac{|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}|^2)}}{\sigma ^2}\right) \nonumber \\{} & {} +\log _2\left( 1+\frac{|\mathbf{u^H b_{2,2}}+c_2\mathbf{u^H b_{b,2}}|^2)}{|\mathbf{u^H b_{2,1}}+c_2\mathbf{u^H b_{b,1}}|^2+\sigma ^2}\right) \nonumber \\= & {} \log _2 \left( \frac{\sigma ^2+|\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2)}{\sigma ^2}\right) \nonumber \\{} & {} +\log _2 \hspace{-1mm}\left( \hspace{-1mm}\frac{|\mathbf{u^H b_{2,1}} \hspace{-1mm}+c_2\mathbf{u^H b_{b,1}}|^2 \hspace{-1mm}+\sigma ^2\hspace{-1mm}+|\mathbf{u^H b_{2,2}}+c_2\mathbf{u^H b_{b,2}}|^2)}{|\mathbf{u^H b_{2,1}}+c_2\mathbf{u^H b_{b,1}}|^2+\sigma ^2}\hspace{-1mm}\right) \end{aligned}$$
(30)

It is assumed that near user \(U_1\) has strong channel conditions than far user \(U_2\), i.e.

$$\begin{aligned} |\mathbf{u^H b_{1,1}}+c_1\mathbf{u^H b_{b,1}}|^2\ge |\mathbf{u^H b_{2,1}}+c_2\mathbf{u^H b_{b,1}}|^2 \end{aligned}$$

by considering lower bound, Eq. (30) reduces as

$$\begin{aligned} R_1+R_2^2= \log _2 \left( \hspace{-1mm} 1+\frac{|\mathbf{u^H b_{2,1}}\hspace{-1mm}+c_2\mathbf{u^H b_{b,1}}|^2\hspace{-1mm}+|\mathbf{u^H b_{2,2}}\hspace{-1mm}+c_2\mathbf{u^H b_{b,2}}|^2)}{\sigma ^2} \hspace{-1mm}\right) \end{aligned}$$
(31)

After using the slack variable \(q_2\), (31) converted into (32), which is the required conversion corresponding to constraint (16c).

$$\begin{aligned} \left( \frac{|\mathbf{u^H b_{2,1}}+c_2\mathbf{u^H b_{b,1}}|^2+|\mathbf{u^H b_{2,2}}+c_2\mathbf{u^H b_{b,2}}|^2)}{\sigma ^2}\right) \ge q_2 \end{aligned}$$
(32)

Therefore, constraints in (16b) & (16c) can be converted into (17b) as shown. The proof is completed. \(\blacksquare\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thenua, R.K., Gandhi, A.S. Joint Beamforming Design for RIS-aided AmBC-enabled MISO NOMA Networks. Wireless Pers Commun 133, 373–393 (2023). https://doi.org/10.1007/s11277-023-10772-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10772-y

Keywords

Navigation