Skip to main content
Log in

A Novel Intuitionistic Fuzzy Inference System for Feature Subset Selection in Weather Prediction

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work presents a novel approach for optimal feature subset (OFS) selection in weather prediction (WP), addressing the challenge of handling a large number of features. The proposed method is a filter-based technique utilizing an intuitionistic fuzzy inference system (IFIS) designed to assess relationships between meteorological features while incorporating geographical factors. The core focus is on the utilisation of the 'hesitation degree' (HD) as a measure of feature importance, a concept applied for the first time in this domain. The method is compared against traditional and state-of-the-art algorithms, including custom fuzzy inference systems (FIS) and several variations of IFIS, showcasing its superiority in terms of accuracy (ACC), precision (PRE), recall (REC), and f1-score (F1S) across various classifiers. The computational analysis affirms the simplicity and efficiency of the proposed method. The main contributions encompass the development of a computationally efficient filter-based feature selection (FS) method, the integration of geographical features, and the emphasis on the HD for a nuanced FS, demonstrating robust performance in scenarios involving nonlinear relationships between features and the target feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

References

  1. Ghazy, R. A., El-Rabaie, E. S. M., Dessouky, M. I., et al. (2020). Feature selection ranking and subset-based techniques with different classifiers forintrusion detectionn. Wireless Personal Communications, 111, 375–393. https://doi.org/10.1007/s11277-019-06864-3

    Article  Google Scholar 

  2. Ghazy, R. A., EL-Rabaie, E. S. M., & Dessouky, M.I., et al. (2018). Efficient techniques for attack detection using different features selection algorithms and classifiers. Wireless Personal Communications, 100, 1689–1706. https://doi.org/10.1007/s11277-018-5662-0

    Article  Google Scholar 

  3. Seo, J.H., Lee, Y. H., & Kim, Y. H. (2014). Feature selection for very short-term heavy rainfall prediction using evolutionary computation. Advances in Meteorology. https://doi.org/10.1155/2014/203545

  4. Kowshalya, A. M., Madhumathi, R., & Gopika, N. (2019). Correlation based feature selection algorithms for varying datasets of different dimensionality. Wireless Personal Communications, 108, 1977–1993. https://doi.org/10.1007/s11277-019-06504-w

    Article  Google Scholar 

  5. Gao, W., Hu, L., Zhang, P., & He, J. (2018). Feature selection considering the composition of feature relevancy. Pattern Recognition Letter, 112, 70–74. https://doi.org/10.1016/j.patrec.2018.06.005

    Article  Google Scholar 

  6. Munirathinam, D. R., & Ranganadhan, M. (2020). A new improved filter-based feature selection model for high-dimensional data. Journal of Supercomputing, 76, 5745–5762. https://doi.org/10.1007/s11227-019-02975-7

    Article  Google Scholar 

  7. Lee, J., Kim, J., & Lee, J.H., et al (2012.) Feature selection for heavy rain prediction using genetic algorithms. In: 6th International Conference on Soft Computing and Intelligent Systems, and 13th International Symposium on Advanced Intelligence Systems, SCIS/ISIS 2012, pp 830–833. https://doi.org/10.1109/SCIS-ISIS.2012.6505383

  8. Bui, D. T., Tsangaratos, P., & Ngo, P. T. T., et al. (2019). Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 668, 1038–1054. https://doi.org/10.1016/j.scitotenv.2019.02.422

    Article  Google Scholar 

  9. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1061/9780784413616.194

    Article  MathSciNet  Google Scholar 

  10. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MathSciNet  Google Scholar 

  11. Hu, L., Gao, W., Zhao, K., et al. (2018). Feature selection considering two types of feature relevancy and feature interdependency. Expert Systems With Applications, 93, 423–434. https://doi.org/10.1016/j.eswa.2017.10.016

    Article  Google Scholar 

  12. Li, J., Guo, F., Zhou, Y., et al. (2023). Predicting the severity of traffic accidents on mountain freeways with dynamic traffic and weather data. Transportation Safety and Environment. https://doi.org/10.1093/tse/tdad001/6998550

    Article  Google Scholar 

  13. Al-Hajj, R., Fouad, M. M., Smieee, A. A., & Mabrouk, E. (2023). Ultra-short-term forecasting of wind speed using lightweight features and machine learning models. In: 12th IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2023. Institute of Electrical and Electronics Engineers Inc., pp 93–97

  14. Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453. https://doi.org/10.1016/j.asoc.2017.11.006

    Article  Google Scholar 

  15. Özyurt, F. (2020). Efficient deep feature selection for remote sensing image recognition with fused deep learning architectures. Journal of Supercomputing, 76, 8413–8431. https://doi.org/10.1007/s11227-019-03106-y

    Article  Google Scholar 

  16. Van Der Meer, D., Camal, S., & Kariniotakis, G. (2022) Generalizing renewable energy forecasting using automatic feature selection and combination; generalizing renewable energy forecasting using automatic feature selection and combination. In: 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). pp 1–6

  17. Tao, H., Awadh, S. M., Salih, S. Q., et al. (2022). Integration of extreme gradient boosting feature selection approach with machine learning models: Application of weather relative humidity prediction. Neural Computing & Applications, 34, 515–533. https://doi.org/10.1007/s00521-021-06362-3

    Article  Google Scholar 

  18. Rene Beulah, J., & Shalini Punithavathani, D. (2018). A hybrid feature selection method for improved detection of wired/wireless network intrusions. Wireless Personal Communications, 98, 1853–1869. https://doi.org/10.1007/s11277-017-4949-x

    Article  Google Scholar 

  19. Wang, H., He, C., & Li, Z. (2020). A new ensemble feature selection approach based on genetic algorithm. Soft Ccomputing, 24, 15811–15820. https://doi.org/10.1007/s00500-020-04911-x

    Article  Google Scholar 

  20. Qin, L., Xiong, Y., & Liu, K. (2019). Weather division-based wind power forecasting model with feature selection. IET Renewable Power Generation, 13, 3050–3060. https://doi.org/10.1049/iet-rpg.2019.0263

    Article  Google Scholar 

  21. Qadir, Z., Khan, S. I., Khalaji, E., et al. (2021). Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Reports. https://doi.org/10.1016/j.egyr.2021.01.018

    Article  Google Scholar 

  22. Iniyan, S., & Jebakumar, R. (2022). Mutual information feature selection (MIFS) based crop yield prediction on corn and soybean crops using multilayer stacked ensemble regression (MSER). Wireless Personal Communications, 126, 1935–1964. https://doi.org/10.1007/s11277-021-08712-9

    Article  Google Scholar 

  23. Rasp, S., Dueben, P.D., & Scher, S., et al. (2020). WeatherBench: A benchmark data set for data-driven weather forecasting. Journal of Advances in Model Earth System, 12. https://doi.org/10.1029/2020MS002203

  24. Wang, K., Sun, J., Cheng, G., & Jiang, H. (2011). Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. The Journal of Mountain Science, 8, 808–816. https://doi.org/10.1007/s11629-011-1090-2

    Article  Google Scholar 

  25. Sedgwick, P. (2012), Pearson’s correlation coefficient. BMJ (Online) 345

  26. Bartlett, R. F. (1993). Linear modelling of Pearson’s product moment correlation coefficient: An Application of Fisher’s z-Transformation. Journal of the Royal Statistical Society Series D (The Statistician), 42, 45–53.

    Google Scholar 

  27. Corey, D. M., Dunlap, W. P., & Burke, M. J. (1998). Averaging correlations: Expected values and bias in combined pearson rs and fisher’s z transformations. Journal of General Psychology, 125, 245–261. https://doi.org/10.1080/00221309809595548

    Article  Google Scholar 

  28. Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Springer. https://doi.org/10.1109/IS.2006.348518

    Article  Google Scholar 

  29. Cagcag Yolcu, O., Bas, E., Egrioglu, E., & Yolcu, U. (2020). A new intuitionistic fuzzy functions approach based on hesitation margin for time-series prediction. Soft Computing, 24, 8211–8222. https://doi.org/10.1007/s00500-019-04432-2

    Article  Google Scholar 

  30. Yang, Y., Liang, C., & Ji, S. (2017). Comments on “Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets” by Ridvan Sahin. Soft Computing, 21, 3033–3035. https://doi.org/10.1007/s00500-015-1988-7

    Article  Google Scholar 

  31. Nayagam, V. L. G., Jeevaraj, S., & Dhanasekaran, P. (2017). An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Computing, 21, 7077–7082. https://doi.org/10.1007/s00500-016-2249-0

    Article  Google Scholar 

  32. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine, 7, 1–13. https://doi.org/10.1016/S0020-7373(75)80002-2

    Article  Google Scholar 

  33. Fan, X. S., Lei, Y. J., Lu, Y. L., & Wang, Y. N. (2016). Long-term intuitionistic fuzzy time series forecasting model based on DTW. Tongxin Xuebao/Journal on Communications 37, 95–104. https://doi.org/10.11959/j.issn.1000-436x.2016160

  34. Angelov, P. P. (1997). Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Systems, 86, 299–306. https://doi.org/10.1016/S0165-0114(96)00009-7

    Article  MathSciNet  Google Scholar 

  35. Garai A, Roy TK (2013) Intuitionistic fuzzy optimization: Usage of hesitation index. International Journal of Computers & Technology 10:1489–1495. https://doi.org/10.24297/ijct.v10i4.3248

  36. Das, A. K., Goswami, S., Chakrabarti, A., & Chakraborti. B. (2020). A strong intuitionistic fuzzy feature association map-based feature selection technique for high-dimensional data. Sadhana, 45. https://doi.org/10.1007/s12046-020-01475-2

  37. Das, A. K., Kumar, S., & Jain, S, et al (2020). An information-theoretic graph-based approach for feature selection. Sadhana, 45. https://doi.org/10.1007/s12046-019-1238-2

  38. Quilodrán, C. S., Currat, M., & Montoya-Burgos, J. I. (2021). Air temperature influences early Covid-19 outbreak as indicated by worldwide mortality. Science of the Total Environment, 792, 148312. https://doi.org/10.1016/j.scitotenv.2021.148312

    Article  Google Scholar 

  39. Du, H., Jones, P., Segarra, E. L., & Bandera, C.F. (2018). Development of a REST API for obtaining site-specific historical and near-future weather data in EPW Format. In: Building Simulation and Optimization Conference (BSO2018), pp 629–634

  40. Biau, G., & Scornet, E. (2015). A random forest guided tour. TEST, 25, 197–227. https://doi.org/10.1007/s11749-016-0481-7

    Article  MathSciNet  Google Scholar 

  41. Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24.

  42. Aydin, Z. E., & Ozturk, Z. K. (2021). Performance Analysis of XGBoost Classifier with Missing Data. In: The 1st International Conference on Computing and Machine Intelligence (ICMI)

  43. Islam, M. J., Jonathan Wu, Q. M., Ahmadi, M., & Sid-Ahmed, M. A. (2010). Investigating the performance of naïve- bayes classifiers and K- nearest neighbor classifiers. Journal of Convergence Information Technology, 5, 133–137.

    Article  Google Scholar 

  44. Bustamante, C., Garrido, L., & Soto, R. (2006). Comparing fuzzy Naive Bayes and Gaussian Naive Bayes for decision making in RoboCup 3D. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp 237–247

  45. Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21, 660–674. https://doi.org/10.1109/21.97458

    Article  MathSciNet  Google Scholar 

  46. Sharma, A. K., Prajapat, S. K., & Aslam M. (2014) A comparative study between Naive Bayes and Neural Network (MLP) classifier for spam email detection. In: National Seminar on Recent Advances in Wireless Networks and Communications, NWNC

  47. Mathanker, S. K., Weckler, P. R., Bowser, T. J., et al. (2011). AdaBoost classifiers for pecan defect classification. Computers and Electronics in Agriculture, 77, 60–68. https://doi.org/10.1016/j.compag.2011.03.008

    Article  Google Scholar 

  48. Ali, A., Ralescu, A., Shamsuddin, S. M., & Ralescu, A. L. (2013). Classification with class imbalance problem: A review. Classification International Journal of Advance Soft Computing Application, 5.

  49. Jin, X., Xu, A,, Bie, R., & Guo, P. (2006). Machine learning techniques and Chi-Square feature selection for cancer classification using SAGE gene expression profiles. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp 2–13

  50. Vergara, J. R., & Estévez, P. A. (2014). A review of feature selection methods based on mutual information. Neural Computing Application, 24, 175–186. https://doi.org/10.1007/s00521-013-1368-0

    Article  Google Scholar 

  51. Spolaôr, N., Cherman, A., Monard, M. C., & Lee, H. D. (2013). ReliefF for Multi-label Feature Selection. In: 2013 Brazilian Conference on Intelligent Systems. IEEE Xplore, pp 6–11

  52. Bhukya, H., & Sadanandam, M. (2023). RoughSet based feature selection for prediction of breast cancer. Wireless Personal Communications, 130, 2197–2214. https://doi.org/10.1007/s11277-023-10378-4

    Article  Google Scholar 

  53. Roy, S., Mondal, S., Ekbal, A., & Desarkar, M. S. (2019). Dispersion ratio based decision tree model for classification. Expert Systems With Applications, 116, 1–9. https://doi.org/10.1016/j.eswa.2018.08.039

    Article  Google Scholar 

  54. Ho Kim, Y., Chul Ahn, S., & Hyun Kwon, W. (2000). Computational complexity of general fuzzy logic control and its simplication for a loop controller. Fuzzy Sets and Systems., 111(2), 215–224.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavya Gupta.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Tayal, D.K. & Jain, A. A Novel Intuitionistic Fuzzy Inference System for Feature Subset Selection in Weather Prediction. Wireless Pers Commun 133, 831–849 (2023). https://doi.org/10.1007/s11277-023-10793-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10793-7

Keywords

Navigation