Skip to main content
Log in

System Design for Maximizing Rate in Vehicle Networking with Reconfigurable Intelligent Surface (RIS) Assistance

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an optimization algorithm for RIS-assisted multiple-input single-output vehicle communication systems, Given a vehicle-to-vehicle user signal to interference plus noise ratio requirement, we optimize the transmit beamforming vector and phase shift matrix of RIS to obtain the maximum transmission rate of vehicle to infrastructure user. To deal with the coupled variables in the optimization problem, the alternate iterative algorithm is exploited to divide the original optimization problem into two sub-problems, each with a single variable. Moreover, the first-order Taylor expansion and the semidefinite relaxation methods are used to transform the nonconvex sub-problems into convex optimization problems. The simulation results are presented to validate the superiority of the proposed method compared to the benchmark schemes. Additionally, the simulation results also reveal that there exits an optimal vehicle speed under different path loss exponents so as to achieve the maximum transmission rate if the RIS is used by our proposed beamforming method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, Z. S., Wang, X., Zhang, C. T., & Lv, S. B. (2015). Massive MIMO technology and challenges. Scientia Sinica Informationis, 45(9), 1095–1110. https://doi.org/10.1360/N112015-00057

    Article  Google Scholar 

  2. Zhang, S. W., & Liu, J. J. (2019). Ergodic capacity analysis on MIMO communications in internet of vehicles. Mobile Networks and Applications, 26(2), 1–17. https://doi.org/10.1007/s11036-019-01352-1

    Article  Google Scholar 

  3. Zhu, Y. S., Mao, B. M., & Kato, N. (2022). Intelligent reflecting surface in 6G vehicular communications: A survey. IEEE Open Journal of Vehicular Technology, 3, 266–277. https://doi.org/10.1109/OJVT.2022.3177253

    Article  Google Scholar 

  4. Dampahalage, D., Manosha, K., Rajatheva, N., & Latva-aho, M. (2020). Intelligent reflecting surface aided vehicular communications. In IEEE Globecom workshops (pp.1–6). https://doi.org/10.1109/GCWkshps50303.2020.9367569

  5. Wu, Q., & Zhang, R. (2019). Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Transactions on Wireless Communications, 18(11), 5394–5409. https://doi.org/10.1109/TWC.2019.2936025

    Article  Google Scholar 

  6. Shen, H., Xu, W., Gong, S. L., He, Z. Y., & Zhao, C. M. (2019). Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Communications Letter, 9, 1488–1492. https://doi.org/10.1109/LCOMM.2019.2924214

    Article  Google Scholar 

  7. Zhu, Z., Xu, J., Sun, G., Wang, Y., & Hao, M. (2021). Secure beamforming design for RIS assisted SWIPT internet of things system. Journal on Communications, 42(4), 185–193. https://doi.org/10.11959/j.issn.1000−436x.2021060

    Article  Google Scholar 

  8. Wang, J., Wang, H., Han, Y., Jin, S., & Li, X. (2021). Joint Transmit beamforming and phase shift design for reconfigurable intelligent surface assisted MIMO systems. IEEE Transactions on Cognitive Communications and Networking, 7(2), 354–368. https://doi.org/10.1109/TCCN.2021.3058665

    Article  Google Scholar 

  9. Dai, J., Zhu, F., Pan, C., Ren, H., & Wang, K. (2022). Statistical CSI-based transmission design for reconfigurable intelligent surface-aided massive MIMO systems with hardware impairments. IEEE Wireless Communications Letters, 11(1), 38–42. https://doi.org/10.1109/LWC.2021.3120269

    Article  Google Scholar 

  10. Wu, Q., & Zhang, R. (2019). Beamforming optimization for intelligent reflecting surface with discrete phase shifts. In ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), Brighton, UK (pp. 7830–7833). https://doi.org/10.1109/ICASSP.2019.8683145

  11. Kong, X. P., Wang, Y., Zhang, L., Shang, Y. L., & Jia, Z. Y. (2022). Active and passive beamforming for IRS-aided vehicle communication. KSII Transactions on Internet and Information Systems, 17(5), 1503–1515. https://doi.org/10.3837/tiis.2023.05.011

    Article  Google Scholar 

  12. Al-Hilo, A., Samir, M., Elhattab, M., Assi, C., & Sharafeddine, S. (2022). Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming. IEEE Transactions on Vehicular Technology, 71(3), 2333–3234. https://doi.org/10.1109/TVT.2022.3141935

    Article  Google Scholar 

  13. Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Li, X., & Kharel, R. (2020). Physical layer security in vehicular networks with reconfigurable intelligent surfaces. In 2020 IEEE 91st vehicular technology conference (VTC2020-Spring) (pp.1–6). https://doi.org/10.1109/VTC2020-Spring48590.2020.9128438

  14. Chen, Y., Wang, Y., Zhang, J., & Li, Z. (2020). Resource allocation for intelligent reflecting surface aided vehicular communications. IEEE Transactions on Vehicular Technology, 69(10), 12321–12326. https://doi.org/10.1109/tvt.2020.3010252

    Article  Google Scholar 

  15. Shabir, M. W., Nguyen, T. N., Mirza, J., Ali, B., & Javed, M. A. (2023). Transmit and reflect beamforming for max-min SINR in IRS-aided MIMO vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1099–1105. https://doi.org/10.1109/TITS.2022.3151135

    Article  Google Scholar 

  16. Han, Y., Tang, W., Jin, S., Wen, C., & Ma, X. (2019). Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Transactions on Vehicular Technology, 68(8), 8238–8242. https://doi.org/10.1109/TVT.2019.2923997

    Article  Google Scholar 

  17. Liang, L., Li, G., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197. https://doi.org/10.1109/TCOMM.2017.2699194

    Article  Google Scholar 

  18. Guan, X., Wu, Q., & Zhang, R. (2020). Joint power control and passive beamforming in IRS-assisted spectrum sharing. IEEE Communications Letters, 24(7), 1553–1557. https://doi.org/10.1109/LCOMM.2020.2979709

    Article  Google Scholar 

  19. Wang, P., Fang, J., Yuan, X., Chen, Z., & Li, H. (2020). Intelligent reflecting surface-assisted millimeter wave communications: joint active and passive precoding design. IEEE Transactionon Vehicular Technology, 69(12), 14960–14973. https://doi.org/10.1109/TVT.2020.3031657

    Article  Google Scholar 

  20. Wang, J., Zhang, W., Bao, X., Song, T., & Pan, C. (2020). Outage analysis for intelligent reflecting surface assisted vehicular communication networks. In GLOBECOM 2020–2020 IEEE global communications conference, Taipei, Taiwan (pp. 1–6). https://doi.org/10.1109/GLOBECOM42002.2020.9322158

  21. Xu, D. F., Yu, X. H., Sun, Y., Ng, D. W. K., & Schober, R. (2020). Resource allocation for IRS-assisted full-duplex cognitive radio systems. IEEE Transactions on Communications, 68(12), 7376–739468. https://doi.org/10.1109/TCOMM.2020.3020838

    Article  Google Scholar 

  22. Grant, M., & Boyd, S. (2016). CVX: MATLAB software for disciplined convex programming. http://cvxr.com/cvx

  23. Fang, F., Xu, Y., Pham, Q., & Ding, Z. (2020). Energy-efficient design of IRS-NOMA networks. IEEE Transactions on Vehicular Technology, 69(11), 14088–14092. https://doi.org/10.1109/TVT.2020.3024005

    Article  Google Scholar 

  24. Guan, X., Wu, Q., & Zhang, R. (2020). Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not? IEEE Wireless Communications Letters, 9(6), 778–782. https://doi.org/10.1109/LWC.2020.2969629

    Article  Google Scholar 

  25. Sidiropoulos, N., Davidson, T., & Luo, Z. (2006). Transmit beamforming for physical-layer multicasting. IEEE Transactions on Signal Processing, 54(6), 2239–2251. https://doi.org/10.1109/TSP.2006.872578

    Article  Google Scholar 

  26. Wu, Q., & Zhang, R. (2020). Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Transactions on Communications, 68(3), 1838–1851. https://doi.org/10.1109/TCOMM.2019.2958916

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61901196, 61701202), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2021D14), Future Network Scientific Research Fund Project (No. FNSRFP-2021-YB-35), Changzhou Sci & Tech Program (Nos. CJ20210070, CJ20235063), Changzhou Key Laboratory of 5G+ Indus-trial Internet Fusion Application (No. CM2023015)

Funding

Funding source of this work is supported by National Natural Science Foundation of China (No. 6190119 6, 61701202), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2021D14), Future Network Scientific Research Fund Project (No.FNSRFP-2021-YB-35), Changzhou Sci&Tech Program (No. CJ20210070), Changzhou Key Laboratory of 5G + Indus-trial Internet Fusion Application (No. CM2023015).

Author information

Authors and Affiliations

Authors

Contributions

Qian Li, Yu Wang and Lei Zhang wrote the main manuscript text, Yulong Shang and Ziyan Jia revised the grammar of the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Availability of Data and Materials

The corresponding author may provide the data and material used in the manuscript subjected to reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Y., Zhang, L. et al. System Design for Maximizing Rate in Vehicle Networking with Reconfigurable Intelligent Surface (RIS) Assistance. Wireless Pers Commun 134, 25–41 (2024). https://doi.org/10.1007/s11277-024-10864-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10864-3

Keywords

Navigation