Skip to main content
Log in

Traditional and Blockchain Based IoT and IIoT Security in the Context of Agriculture: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Agriculture is an inevitable area for research that must be prioritized as the world population is continuously growing. To meet agricultural product demand, agricultural processes from production to consumption must be optimized and require automation. Digitalization of the agriculture process needs data security in each phase. This paper discusses the layer-wise common attacks in IoT-based agriculture systems and their traditional and Blockchain-based security solutions. Furthermore, this paper reports the current trending technology used by researchers from academia and industry in agriculture and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

There is no such dataset used and generated in this research.

Notes

  1. More detail is available at: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100

References

  1. Misra, N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324.

    Article  Google Scholar 

  2. Li, Y., Tan, C., Ip, W., & Wu, C. (2023). Dynamic blockchain adoption for freshness-keeping in the fresh agricultural product supply chain. Expert Systems with Applications, 217, 119494.

    Article  Google Scholar 

  3. Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334.

    Article  Google Scholar 

  4. Cox, S. (2002). Information technology: The global key to precision agriculture and sustainability. Computers and Electronics in Agriculture, 36(2), 93–111.

    Article  Google Scholar 

  5. Vangala, A., Das, A. K., Chamola, V., Korotaev, V., & Rodrigues, J. J. (2022). Security in IoT-enabled smart agriculture: architecture, security solutions and challenges. Cluster Computing, 26(2), 879–902.

    Article  Google Scholar 

  6. Chaudhary, S., & Mishra, P. K. (2023). DDoS attacks in industrial IoT: A survey. Computer Networks, 236, 110015.

    Article  Google Scholar 

  7. Liu, Q., Zhao, X., & Shi, K. (2023). The analysis of agricultural Internet of Things product marketing by deep learning. The Journal of Supercomputing, 79(4), 4602–4621.

    Article  Google Scholar 

  8. Suryadevara, N. K., Mukhopadhyay, S. C., Kelly, S. D. T., & Gill, S. P. S. (2014). WSN-based smart sensors and actuator for power management in intelligent buildings. IEEE/ASME Transactions on Mechatronics, 20(2), 564–571.

    Article  Google Scholar 

  9. Kodali, R.K., Rawat, N., Boppana, L. (2014). WSN sensors for precision agriculture. 2014 IEEE Region 10 symposium (pp. 651–656).

  10. Imteaj, A., Thakker, U., Wang, S., Li, J., & Amini, M. H. (2021). A survey on federated learning for resource-constrained IoT devices. IEEE Internet of Things Journal, 9(1), 1–24.

    Article  Google Scholar 

  11. Numan, M., Subhan, F., Khan, W. Z., Hakak, S., Haider, S., Reddy, G. T., & Alazab, M. (2020). A systematic review on clone node detection in static wireless sensor networks. IEEE Access, 8, 65450–65461.

    Article  Google Scholar 

  12. Hameed, K., Garg, S., Amin, M. B., Kang, B., & Khan, A. (2022). A context aware information-based clone node attack detection scheme in Internet of Things. Journal of Network and Computer Applications, 197, 103271.

    Article  Google Scholar 

  13. Wang, J., Liu, C., Zhou, L., Tian, L., Yu, X. (2021). Early detection of node capture attack in the Internet of Things. 2021 IEEE 4th International conference on electronics and communication engineering (ICECE) (pp. 132–135).

  14. Zeng, B., Dong, Y., & Lu, D. (2012). A point-to-point interference measurement approach for large-scale wireless sensor networks. International Journal of Distributed Sensor Networks, 8(10), 919815.

    Article  Google Scholar 

  15. Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022). Detection of false data injection attacks in smart grid: A secure federated deep learning approach. IEEE Transactions on Smart Grid, 13(6), 4862–4872.

    Article  Google Scholar 

  16. Profentzas, C., Gunes, M., Nikolakopoulos, Y., Landsiedel, O., Almgren, M. (2019). Performance of secure boot in embedded systems. 2019 15th International conference on distributed computing in sensor systems (DCOSS) (pp. 198–204).

  17. Sarkar, M., & Roy, D.B. (2011). Prevention of sleep deprivation attacks using clustering. 2011 3rd international conference on electronics computer technology (Vol. 5, pp. 391–394).

  18. Devi, M., & Majumder, A. (2021). Side-channel attack in Internet of Things: a survey. Applications of Internet of things (pp. 213–222).

  19. Alladi, T., Chamola, V., Sikdar, B., & Choo, K.-K.R. (2020). Consumer IoT: Security vulnerability case studies and solutions. IEEE Consumer Electronics Magazine, 9(2), 17–25.

    Article  Google Scholar 

  20. Singh, J., Woungang, I., Dhurandher, S. K., & Khalid, K. (2022). A jamming attack detection technique for opportunistic networks. Internet of Things, 17, 100464.

    Article  Google Scholar 

  21. Yan, J., Yang, G. H., & Wang, Y. (2022). Dynamic reduced-order observer-based detection of false data injection attacks with application to smart grid systems. IEEE Transactions on Industrial Informatics, 18(10), 6712–6722.

    Article  Google Scholar 

  22. Adnan, L., Yussoff, Y., Hashim, H. (2010). Secure boot process for wireless sensor node. 2010 International conference on computer applications and industrial electronics (pp. 646–649).

  23. Shi, Z., Mamun, A. A., Kan, C., Tian, W., & Liu, C. (2022). An lstm-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing. Journal of Intelligent Manufacturing, 34, 1815–1831.

    Article  Google Scholar 

  24. Gaber, T., El-Ghamry, A., & Hassanein, A. E. (2022). Injection attack detection using machine learning for smart IoT applications. Physical Communication, 52, 101685.

    Article  Google Scholar 

  25. Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y.-J.A. (2019). The roadmap to 6G: AI-empowered wireless networks. IEEE Communications Magazine, 57(8), 84–90.

    Article  Google Scholar 

  26. Sara, J.J., Hossain, M.S., Khan, W.Z., Aalsalem, M.Y. (2019). Survey on internet of things and 4G. 2019 international conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET) (pp. 1–6).

  27. Khan, B. S., Jangsher, S., Ahmed, A., & Al-Dweik, A. (2022). URLLC and eMBB in 5G industrial IoT: A survey. IEEE Open Journal of the Communications Society, 3, 1134–1163.

    Article  Google Scholar 

  28. Ayoub, W., Samhat, A. E., Nouvel, F., Mroue, M., & Prevotet, J.-C. (2018). Internet of mobile things: Overview of LoRaWAN, dash7, and NB-IoT in LPWANS standards and supported mobility. IEEE Communications Surveys & Tutorials, 21(2), 1561–1581.

    Article  Google Scholar 

  29. Lauridsen, M. (2015). Studies on mobile terminal energy consumption for LTE and future 5G. Aalborg University.

    Google Scholar 

  30. Kuntke, F., Romanenko, V., Linsner, S., Steinbrink, E., & Reuter, C. (2022). LoRaWAN security issues and mitigation options by the example of agricultural IoT scenarios. Transactions on Emerging Telecommunications Technologies, 33, e4452.

    Article  Google Scholar 

  31. De Neira, A. B., Kantarci, B., & Nogueira, M. (2023). Distributed denial of service attack prediction: Challenges, open issues and opportunities. Computer Networks, 222, 109553.

    Article  Google Scholar 

  32. Aljuhani, A. (2021). Machine learning approaches for combating distributed denial of service attacks in modern networking environments. IEEE Access, 9, 42236–42264.

    Article  Google Scholar 

  33. Gupta, B., Chaudhary, P., Chang, X., & Nedjah, N. (2022). Smart defense against distributed denial of service attack in IoT networks using supervised learning classifiers. Computers & Electrical Engineering, 98, 107726.

    Article  Google Scholar 

  34. Prasad, A., & Chandra, S. (2022). VMFCVD: An optimized framework to combat volumetric DDoS attacks using machine learning. Arabian Journal for Science and Engineering, 47(8), 9965–9983.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta, B. B., Arachchilage, N. A., & Psannis, K. E. (2018). Defending against phishing attacks: Taxonomy of methods, current issues and future directions. Telecommunication Systems, 67(2), 247–267.

    Article  Google Scholar 

  36. Sadiq, A., Anwar, M., Butt, R. A., Masud, F., Shahzad, M. K., Naseem, S., & Younas, M. (2021). A review of phishing attacks and countermeasures for Internet of things-based smart business applications in industry 4.0. Human Behaviour and Emerging Technologies, 3(5), 854–864.

    Article  Google Scholar 

  37. Abbas, S. G., Vaccari, I., Hussain, F., Zahid, S., Fayyaz, U. U., Shah, G. A., & Cambiaso, E. (2021). Identifying and mitigating phishing attack threats in IoT use cases using a threat modelling approach. Sensors, 21(14), 4816.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Malani, S., Srinivas, J., Das, A. K., Srinathan, K., & Jo, M. (2019). Certificate based anonymous device access control scheme for IoT environment. IEEE Internet of Things Journal, 6(6), 9762–9773.

    Article  Google Scholar 

  39. Salonikias, S., Gouglidis, A., Mavridis, I., Gritzalis, D. (2019). Access control in the industrial Internet of Things. Security and privacy trends in the industrial Internet of things (pp. 95–114).

  40. Choudhary, S., & Kesswani, N. (2018). Detection and prevention of routing attacks in Internet of Things. 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE) (pp. 1537–1540).

  41. Yavuz, F. Y., Devrim, U., & Ensar, G. (2018). Deep learning for detection ¨ of routing attacks in the Internet of Things. International Journal of Computational Intelligence Systems, 12(1), 39.

    Article  Google Scholar 

  42. Hameed, S., Khan, F. I., & Hameed, B. (2019). Understanding security requirements and challenges in Internet of Things (IoT): A review. Journal of Computer Networks and Communications. https://doi.org/10.1155/2019/9629381

    Article  Google Scholar 

  43. Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of Things Journal, 5(4), 2483–2495.

    Article  Google Scholar 

  44. Mihoub, A., Fredj, O. B., Cheikhrouhou, O., Derhab, A., & Krichen, M. (2022). Denial of service attack detection and mitigation for Internet of Things using looking-back-enabled machine learning techniques. Computers & Electrical Engineering, 98, 107716.

    Article  Google Scholar 

  45. Ojewumi, T., Ogunleye, G., Oguntunde, B., Folorunsho, O., Fashoto, S., & Ogbu, N. (2022). Performance evaluation of machine learning tools for detection of phishing attacks on web pages. Scientific African, 16, e01165.

    Article  Google Scholar 

  46. Mehta, A., Sandhu, J.K., Pundir, M., Kaur, R., Sapra, L. (2022). Sinkhole attack detection in wireless sensor networks. Proceedings of data analytics and management (pp. 85–94).

  47. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A. (2009). Above the clouds: A Berkeley view of cloud computing (Tech. Rep.). Technical Report UCB/EECS-2009–28, EECS Department, University of California.

  48. Dincer, I. (2018). Comprehensive energy systems. Elsevier.

    Google Scholar 

  49. Haghnegahdar, L., Joshi, S. S., & Dahotre, N. B. (2022). From IoT-based cloud manufacturing approach to intelligent additive manufacturing: Industrial internet of things—an overview. The International Journal of Advanced Manufacturing Technology, 119, 1461–1478.

    Article  Google Scholar 

  50. Pushpa, J., & Kalyani, S. (2020). The fog computing/edge computing to leverage digital twin. Advances in computers (Vol. 117, pp. 51–77).

  51. Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A., Crowcroft, J. (2017). Picasso: A lightweight edge computing platform. 2017 IEEE 6th International Conference on Cloud Networking (CloudNet) (pp. 1–7).

  52. Tange, K., De Donno, M., Fafoutis, X., & Dragoni, N. (2020). A systematic survey of industrial Internet of Things security: Requirements and fog computing opportunities. IEEE Communications Surveys & Tutorials, 22(4), 2489–2520.

    Article  Google Scholar 

  53. Caiza, G., Saeteros, M., Onate, W., & Garcia, M. V. (2020). Fog computing at industrial level, architecture, latency, energy, and security: A review. Heliyon, 6(4), e03706.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Uwagbole, S.O., Buchanan, W.J., Fan, L. (2017). Applied machine learning predictive analytics to SQL injection attack detection and prevention. 2017 IFIP/IEEE symposium on integrated network and service management (IM) (pp. 1087–1090).

  55. Salem, O., Alsubhi, K., Shaafi, A., Gheryani, M., Mehaoua, A., & Boutaba, R. (2021). Man-in-the-middle attack mitigation in Internet of medical things. IEEE Transactions on Industrial Informatics, 18(3), 2053–2062.

    Article  Google Scholar 

  56. Kumar, P. (2016). Cloud computing: Threats, attacks and solutions. International Journal of Emerging Technologies in Engineering Research (IJETER), 4(8), 24–28.

    Google Scholar 

  57. Williams, P., Dutta, I., Daoud, H., Bayoumi, M. (2020). Security aspects of Internet of things – a survey. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) (p. 1–6).

  58. De Araujo Zanella, A. R., da Silva, E., & Albini, L. C. P. (2020). Security challenges to smart agriculture: Current state, key issues, and future directions. Array, 8, 100048.

    Article  Google Scholar 

  59. Zarei, S. M., & Fotohi, R. (2021). Defense against flooding attacks using probabilistic thresholds in the Internet of Things ecosystem. Security and Privacy, 4(3), e152.

    Article  Google Scholar 

  60. Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y., Zhang, H., & Zhi, G. (2022). Deep neural network-based SQL injection detection method. Security and Communication Networks. https://doi.org/10.1155/2022/4836289

    Article  Google Scholar 

  61. Aliyu, F., Sheltami, T., & Shakshuki, E. M. (2018). A detection and prevention technique for man in the middle attack in fog computing. Procedia Computer Science, 141, 24–31.

    Article  Google Scholar 

  62. Watson, M. R., Marnerides, A. K., Mauthe, A., & Hutchison, D. (2015). Malware detection in cloud computing infrastructures. IEEE Transactions on Dependable and Secure Computing, 13(2), 192–205.

    Article  Google Scholar 

  63. Gupta, A.N., & Santhi Thilagam, P. (2016). Detection of XML signature wrapping attack using node counting. Proceedings of the 3rd International Symposium on big data and cloud computing challenges (ISBCC–16’) (pp. 57–63).

  64. Yu, J., Lee, H., Kim, M.-S., & Park, D. (2008). Traffic flooding attack detection with SNMP MIB using SVM. Computer Communications, 31(17), 4212–4219.

    Article  Google Scholar 

  65. Damghani, H., Damghani, L., Hosseinian, H., Sharifi, R. (2019). Classification of attacks on IoT. 4th international conference on combinatorics, cryptography, computer science and computation.

  66. Deogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. 2017 international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC) (pp. 32–37).

  67. Swamy, S.N., Jadhav, D., Kulkarni, N. (2017). Security threats in the application layer in IoT applications. 2017 international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC) (pp. 477–480).

  68. Abdul-Ghani, H. A., Konstantas, D., & Mahyoub, M. (2018). A comprehensive IoT attacks survey based on a building-blocked reference model. International Journal of Advanced Computer Science and Applications, 9(3), 355–373.

    Google Scholar 

  69. Khader, R., & Eleyan, D. (2021). Survey of DoS/DDoS attacks in IoT. Sustainable Engineering and Innovation, 3(1), 23–28.

    Article  Google Scholar 

  70. Shon, T., Cho, J., Han, K., & Choi, H. (2014). Toward advanced mobile cloud computing for the internet of things: Current issues and future direction. Mobile Networks and Applications, 19(3), 404–413.

    Article  Google Scholar 

  71. Karpinski, M., Korchenko, A., Vikulov, P., Kochan, R., Balyk, A., Kozak, R. (2017). The etalon models of linguistic variables for sniffing-attack detection. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Vol. 1, pp. 258–264).

  72. Lima Filho, F.S.d., Silveira, F.A., de Medeiros Brito Junior, A., Vargas Solar, G., Silveira, L.F. (2019). Smart detection: an online approach for DoS/DDoS attack detection using machine learning. Security and Communication Networks.

  73. Panarello, A., Tapas, N., Merlino, G., Longo, F., & Puliafito, A. (2018). Blockchain and IoT integration: A systematic survey. Sensors, 18(8), 2575.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Sober, M., Sigwart, M., Frauenthaler, P., Spanring, C., Kobelt, M., & Schulte, S. (2023). Decentralized cross-blockchain asset transfers with transfer confirmation. Cluster computing, 26(4), 2129–2146.

    Article  Google Scholar 

  75. Biswas, D., Jalali, H., Ansaripoor, A. H., & De Giovanni, P. (2023). Traceability vs. sustainability in supply chains: The implications of blockchain. European Journal of Operational Research, 305(1), 128–147.

    Article  MathSciNet  Google Scholar 

  76. Bodkhe, U., Tanwar, S., Parekh, K., Khanpara, P., Tyagi, S., Kumar, N., & Alazab, M. (2020). Blockchain for industry 4.0: A comprehensive review. IEEE Access, 8, 79764–79800.

    Article  Google Scholar 

  77. Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407.

    Article  Google Scholar 

  78. Hewa, T., Ylianttila, M., & Liyanage, M. (2021). Survey on blockchain based smart contracts: Applications, opportunities and challenges. Journal of Network and Computer Applications, 177, 102857.

    Article  Google Scholar 

  79. Chen, Y.-J., Wang, L.-C., & Wang, S. (2018). Stochastic blockchain for iot data integrity. IEEE Transactions on Network Science and Engineering, 7(1), 373–384.

    Article  Google Scholar 

  80. Nehe, M., & Jain, S.A. (2019). A survey on data security using blockchain: Merits, demerits and applications. 2019 International Conference on recent advances in energy-efficient computing and communication (ICRAECC) (pp. 1–5).

  81. Bernabe, J. B., Canovas, J. L., Hernandez-Ramos, J. L., Moreno, R. T., & Skarmeta, A. (2019). Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access, 7, 164908–164940.

    Article  Google Scholar 

  82. Liang, X., Zhao, J., Shetty, S., Li, D. (2017). Towards data assurance and resilience in IoT using blockchain. Milcom 2017–2017 IEEE military communications conference (MILCOM) (pp. 261–266).

  83. Mu, Y., Rezaeibagha, F., & Huang, K. (2019). Policy-driven blockchain and its applications for transport systems. IEEE Transactions on Services Computing, 13(2), 230–240.

    Google Scholar 

  84. Hassija, V., Bansal, G., Chamola, V., Kumar, N., & Guizani, M. (2020). Secure lending: Blockchain and prospect theory-based decentralized credit scoring model. IEEE Transactions on Network Science and Engineering, 7(4), 2566–2575.

    Article  MathSciNet  Google Scholar 

  85. Sookhak, M., Jabbarpour, M. R., Safa, N. S., & Yu, F. R. (2021). Blockchain and smart contract for access control in healthcare: A survey, issues and challenges, and open issues. Journal of Network and Computer Applications, 178, 102950.

    Article  Google Scholar 

  86. Ghaffari, F., Bertin, E., Crespi, N., Behrad, S., & Hatin, J. (2021). A novel access control method via smart contracts for internet-based service provisioning. IEEE Access, 9, 81253–81273.

    Article  Google Scholar 

  87. Banerjee, M., Lee, J., & Choo, K. K. R. (2018). A blockchain future for internet of things security: A position paper. Digital Communications and Networks, 4(3), 149–160.

    Article  Google Scholar 

  88. Buttar, H.M., Aman, W., Rahman, M., Abbasi, Q.H. (2022). Countering active attacks on raft-based IoT blockchain networks. arXiv preprint arXiv:2204.00838.

  89. Xu, H., Zhang, L., Liu, Y., & Cao, B. (2020). RAFT based wireless blockchain networks in the presence of malicious jamming. IEEE Wireless Communications Letters, 9(6), 817–821.

    Article  Google Scholar 

  90. Hong, S. (2020). P2P networking based internet of things (iot) sensor node authentication by blockchain. Peer-to-Peer Networking and Applications, 13(2), 579–589.

    Article  Google Scholar 

  91. Kumar, P., Kumar, R., Gupta, G. P., Tripathi, R., & Srivastava, G. (2022). P2tif: a blockchain and deep learning framework for privacy-preserved threat intelligence in industrial IoT. IEEE Transactions on Industrial Informatics, 18(9), 6358–6367.

    Article  Google Scholar 

  92. Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Islam, A. N., & Shorfuzzaman, M. (2022). Permissioned blockchain and deep-learning for secure and efficient data sharing in industrial healthcare systems. IEEE Transactions on Industrial Informatics, 18(11), 8065–8073.

    Article  Google Scholar 

  93. Alkadi, O., Moustafa, N., Turnbull, B., & Choo, K.-K.R. (2020). A deep blockchain framework-enabled collaborative intrusion detection for protecting IoT and cloud networks. IEEE Internet of Things Journal, 8(12), 9463–9472.

    Article  Google Scholar 

  94. Oktian, Y. E., Lee, S.-G., & Lee, B.-G. (2020). Blockchain-based continued integrity service for iot big data management: A comprehensive design. Electronics, 9(9), 1434.

    Article  Google Scholar 

  95. Sahay, R., Geetha Kumari, G., & Mitra, B. (2020). A novel blockchain based framework to secure IoT-LLNs against routing attacks. Computing, 102(11), 2445–2470.

    Article  Google Scholar 

  96. Ding, S., Cao, J., Li, C., Fan, K., & Li, H. (2019). A novel attribute-based access control scheme using blockchain for IoT. IEEE Access, 7, 38431–38441.

    Article  Google Scholar 

  97. Rizzardi, A., Sicari, S., Miorandi, D., & Coen-Porisini, A. (2022). Securing the access control policies to the Internet of Things resources through permissioned blockchain. Concurrency and Computation: Practice and Experience, 34(15), e6934.

    Article  Google Scholar 

  98. Bera, B., Saha, S., Das, A. K., & Vasilakos, A. V. (2020). Designing blockchain based access control protocol in IoT-enabled smart-grid system. IEEE Internet of Things Journal, 8(7), 5744–5761.

    Article  Google Scholar 

  99. Kim, J., & Park, N. (2022). Role-based access control video surveillance mechanism modeling in smart contract environment. Transactions on Emerging Telecommunications Technologies, 33(4), e4227.

    Article  Google Scholar 

  100. Chen, Y., Yang, X., Li, T., Ren, Y., & Long, Y. (2022). A blockchain-empowered authentication scheme for worm detection in wireless sensor network. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.04.007

    Article  Google Scholar 

  101. Rathee, G., Balasaraswathi, M., Chandran, K. P., Gupta, S. D., & Boopathi, C. (2021). A secure IoT sensor communication in Industry 4.0 using blockchain technology. Journal of Ambient Intelligence and Humanized Computing, 12(1), 533–545.

    Article  Google Scholar 

  102. Wang, W., Xu, H., Alazab, M., Gadekallu, T. R., Han, Z., & Su, C. (2021). Blockchain-based reliable and efficient certificateless signature for IIoT devices. IEEE transactions on industrial informatics., 18(10), 7059–7067.

    Article  Google Scholar 

  103. Liu, C. H., Lin, Q., & Wen, S. (2018). Blockchain-enabled data collection and sharing for industrial IoT with deep reinforcement learning. IEEE Transactions on Industrial Informatics, 15(6), 3516–3526.

    Article  Google Scholar 

  104. Birrell, S., Hughes, J., Cai, J. Y., & Iida, F. (2020). A field-tested robotic harvesting system for iceberg lettuce. Journal of Field Robotics, 37(2), 225–245.

    Article  PubMed  Google Scholar 

  105. Libran-Embid, F., Klaus, F., Tscharntke, T., & Grass, I. (2020). Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes-A systematic review. Science of the Total Environment, 732, 139204.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Ghafar, A. S. A., Hajjaj, S. S. H., Gsangaya, K. R., Sultan, M. T. H., Mail, M. F., & Hua, L. S. (2021). Design and development of a robot for spraying fertilizers and pesticides for agriculture. Materials Today: Proceedings, 81, 242–248.

    Google Scholar 

  107. Li, T., Yu, J., Qiu, Q., & Zhao, C. (2022). Hybrid uncalibrated visual servoing control of harvesting robots with RGB-D cameras. IEEE Transactions on Industrial Electronics, 70(3), 2729–2738.

    Article  Google Scholar 

  108. Motokura, K., Takahashi, M., Ewerton, M., & Peters, J. (2020). Plucking motions for tea harvesting robots using probabilistic movement primitives. IEEE Robotics and Automation Letters, 5(2), 3275–3282.

    Article  Google Scholar 

  109. Ramkumar, M., & John, M.S. (2022). Design and simulation of agricultural mobile robot for ploughing and spraying operation with controlled by iot. Aip conference proceedings (Vol. 2460, p. 040002).

  110. Mohta, V., Patnaik, A., Panda, S.K., Krishnan, S.V., Gupta, A., Shukla, A., Bandopadhyay, A. (2022). Design of an all-purpose terrace farming robot. arXiv preprint arXiv:2212.01745.

  111. Sai, M.M.V., Babu, U.H., Krishna, N.H. (2022). Multipurpose agricultural robot using iot. Aip conference proceedings (Vol. 2653, p. 040004).

  112. Bleken, M. A., & Rittl, T. F. (2022). Soil ph-increase strongly mitigated n2o emissions following ploughing of grass and clover swards in autumn: A winter field study. Science of The Total Environment, 828, 154059.

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Wang, Y., Xu, J., Liu, Q., Zhang, Y., Yang, J. (2022). Path planning of seeding robot based on improved ant colony algorithm. Proceedings of 2021 chinese intelligent automation conference (pp. 31–37).

  114. Kumar, A., & Rajagopal, H. (2022). Automated seeding and irrigation system using Arduino. Journal of Robotics, Networking and Artificial Life, 8(4), 259–262.

    Article  Google Scholar 

  115. Sugadev, M., Ravi, T., Kumar, A.V., Ilayaraja, T. (2022). Arduino board based wireless controlled seed sowing robot. Artificial intelligence and technologies (pp. 323–333).

  116. Lara, H., Abbasi, R., Martinez, P., Ahmad, R. (2022). Remote access of an autonomous seed sowing robot in a learning factory. Available at SSRN 4089819.

  117. Fadhaeel, T., Al Ahdal, A., Rakhra, M., Singh, D. (2022). Design and development an agriculture robot for seed sowing, water spray and fertigation. 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES) (pp. 148–153).

  118. Li, Y., Guo, Z., Shuang, F., Zhang, M., & Li, X. (2022). Key technologies of machine vision for weeding robots: A review and benchmark. Computers and Electronics in Agriculture, 196, 106880.

    Article  Google Scholar 

  119. Pisharody, S.N., Ravichandran, S., Suresh, R., Kittali, P., Aswin Kumar, T. (2022). Design and analysis of a weeding robot. AIP conference proceedings (Vol. 2648, p. 020013).

  120. An, Q., Wang, K., Li, Z., Song, C., Tang, X., & Song, J. (2022). Real-time monitoring method of strawberry fruit growth state based on YOLO improved model. IEEE Access, 10, 124363–124372.

    Article  Google Scholar 

  121. Ge, Y., Lin, S., Zhang, Y., Li, Z., Cheng, H., Dong, J., & Wu, Z. (2022). Tracking and counting of tomato at different growth period using an improving YOLO-Deepsort network for inspection robot. Machines, 10(6), 489.

    Article  Google Scholar 

  122. Rong, J., Wang, P., Wang, T., Hu, L., & Yuan, T. (2022). Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Computers and Electronics in Agriculture, 202, 107430.

    Article  Google Scholar 

  123. Seol, J., Kim, J., & Son, H. I. (2022). Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards. Precision Agriculture, 23(2), 712–732.

    Article  Google Scholar 

  124. Elfferich, J. F., Dodou, D., & Della Santina, C. (2022). Soft robotic grippers for crop handling or harvesting: A review. IEEE Access, 10, 75428–75443.

    Article  Google Scholar 

  125. Lytridis, C., Kaburlasos, V. G., Pachidis, T., Manios, M., Vrochidou, E., Kalampokas, T., & Chatzistamatis, S. (2021). An overview of cooperative robotics in agriculture. Agronomy, 11(9), 1818.

    Article  CAS  Google Scholar 

  126. Rose, D. C., Lyon, J., de Boon, A., Hanheide, M., & Pearson, S. (2021). Responsible development of autonomous robotics in agriculture. Nature Food, 2(5), 306–309.

    Article  PubMed  Google Scholar 

  127. Lloyd, C., & Payne, J. (2023). Food for thought: Robots, jobs and skills in food and drink processing in norway and the uk. New Technology, Work and Employment, 38(2), 272–290.

    Article  Google Scholar 

  128. Ji, T., Sivakumar, A. N., Chowdhary, G., & Driggs-Campbell, K. (2022). Proactive anomaly detection for robot navigation with multi-sensor fusion. IEEE Robotics and Automation Letters, 7(2), 4975–4982.

    Article  Google Scholar 

  129. Wu, J., Jin, Z., Liu, A., Yu, L., & Yang, F. (2022). A survey of learning based control of robotic visual servoing systems. Journal of the Franklin Institute, 359(1), 556–577.

    Article  Google Scholar 

  130. Wu, J., Jin, Z., Liu, A., Yu, L., & Yang, F. (2022). A hybrid deep-q-network and model predictive control for point stabilization of visual servoing systems. Control Engineering Practice, 128, 105314.

    Article  Google Scholar 

  131. Jokic, A., & Petrovi´c, M., Miljkovi´c, Z. (2022). Semantic segmentation based stereo visual servoing of nonholonomic mobile robot in intelligent manufacturing environment. Expert Systems with Applications, 190, 116203.

    Article  Google Scholar 

  132. Al-Shanoon, A., Wang, Y., & Lang, H. (2022). Deepnet-based 3d visual servoing robotic manipulation. Journal of Sensors. https://doi.org/10.1155/2022/3511265

    Article  Google Scholar 

  133. Tan, N., Yu, P., & Zheng, W. (2022). Uncalibrated and unmodeled image-based visual servoing of robot manipulators using zeroing neural networks. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3227470

    Article  PubMed  Google Scholar 

  134. Zhou, Z., Guo, J., Wang, Y., & Zhu, Z. (2022). Random vector functional link network with l21 norm regularization for robot visual servo control with feature constraint. Journal of Mechanical Science and Technology, 36(9), 4747–4759.

    Article  Google Scholar 

  135. Raikwar, S., Fehrmann, J., & Herlitzius, T. (2022). Navigation and control development for a four-wheel-steered mobile orchard robot using model based design. Computers and Electronics in Agriculture, 202, 107410.

    Article  Google Scholar 

  136. Suzuki, T. (2022). GNSS odometry: Precise trajectory estimation based on carrier phase cycle slip estimation. IEEE Robotics and Automation Letters, 7(3), 7319–7326.

    Article  Google Scholar 

  137. Verma, A., Bhattacharya, P., Madhani, N., Trivedi, C., Bhushan, B., Tanwar, S., & Sharma, R. (2022). Blockchain for Industry 5.0: Vision, opportunities, key enablers, and future directions. IEEE Access, 10, 69160–69199.

    Article  Google Scholar 

  138. Iniyan, S., Varma, V. A., & Naidu, C. T. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175, 103326.

    Article  Google Scholar 

  139. Qiao, M., He, X., Cheng, X., Li, P., Zhao, Q., Zhao, C., & Tian, Z. (2023). Kstage: A knowledge-guided spatial-temporal attention graph learning network for crop yield prediction. Information Sciences, 619, 19–37.

    Article  Google Scholar 

  140. Bregaglio, S., Ginaldi, F., Raparelli, E., Fila, G., & Bajocco, S. (2023). Improving crop yield prediction accuracy by embedding phenological heterogeneity into model parameter sets. Agricultural Systems, 209, 103666.

    Article  Google Scholar 

  141. Tanabe, R., Matsui, T., & Tanaka, T. S. (2023). Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Research, 291, 108786.

    Article  Google Scholar 

  142. Gholian-Jouybari, F., Hajiaghaei-Keshteli, M., Bavar, A., Bavar, A., & Mosallanezhad, B. (2023). A design of a circular closed-loop agri-food supply chain network—a case study of the soybean industry. Journal of Industrial Information Integration, 36, 100530.

    Article  Google Scholar 

  143. Sirisankanan, A. (2023). Natural circumstances and farm labor supply adjustment: The response of the farm labor supply to permanent and transitory natural events. Environment, Development and Sustainability, 25(9), 9935–9961.

    Article  Google Scholar 

  144. Xie, J., Yang, R., Gooi, H. B., & Nguyen, H. D. (2023). Pid-based cnn-lstm for accuracy-boosted virtual sensor in battery thermal management system. Applied Energy, 331, 120424.

    Article  Google Scholar 

  145. Nejad, S. M. M., Abbasi-Moghadam, D., Sharifi, A., Farmonov, N., Amankulova, K., & Laszlz, M. (2022). Multispectral crop yield prediction using 3d-convolutional neural networks and attention convolutional lstm approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 254–266.

    Article  ADS  Google Scholar 

  146. Gavahi, K., Abbaszadeh, P., & Moradkhani, H. (2021). Deepyield: A combined convolutional neural network with long short-term memory for crop yield forecasting. Expert Systems with Applications, 184, 115511.

    Article  Google Scholar 

  147. Wang, Y., Shi, W., & Wen, T. (2023). Prediction of winter wheat yield and dry matter in north China plain using machine learning algorithms for optimal water and nitrogen application. Agricultural Water Management, 277, 108140.

    Article  Google Scholar 

  148. Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of eu-28. Ecological Indicators, 105, 525–543.

    Article  Google Scholar 

  149. Anh, D. L. T., Anh, N. T., & Chandio, A. A. (2023). Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecological Informatics, 74, 101960.

    Article  Google Scholar 

  150. Ukhurebor, K.E., Adetunji, C.O., Olugbemi, O.T., Nwankwo, W., Olayinka, A.S., Umezuruike, C., Hefft, D.I. (2022). Precision agriculture: Weather forecasting for future farming. Ai, edge and iot-based smart agriculture (pp. 101–121).

  151. Abdulla, N., Demirci, M., & Ozdemir, S. (2022). Design and evaluation of adaptive deep learning models for weather forecasting. Engineering Applications of Artificial Intelligence, 116, 105440.

    Article  Google Scholar 

  152. Suleman, M. A. R., & Shridevi, S. (2022). Short-term weather forecasting using spatial feature attention based lstm model. IEEE Access, 10, 82456–82468.

    Article  Google Scholar 

  153. Dimitrijevi´c, M.S. (2023). Technological progress in the function of productivity and sustainability of agriculture: The case of innovative countries and the republic of serbia. Journal of Agriculture and Food Research, 14, 100856.

    Article  Google Scholar 

  154. Kumar, A., Singh, P., Raizada, P., & Hussain, C. M. (2022). Impact of covid-19 on greenhouse gases emissions: A critical review. Science of The Total Environment, 806, 150349.

    Article  ADS  CAS  PubMed  Google Scholar 

  155. Maraveas, C., Piromalis, D., Arvanitis, K., Bartzanas, T., & Loukatos, D. (2022). Applications of IoT for optimized greenhouse environment and resources management. Computers and Electronics in Agriculture, 198, 106993.

    Article  Google Scholar 

  156. Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., & Hasrane, I. (2022). Design, technology, and management of greenhouse: A review. Journal of Cleaner Production, 373, 133753.

    Article  CAS  Google Scholar 

  157. Lap, B. Q., Du Nguyen, H., Hang, P. T., Phi, N. Q., Hoang, V. T., & Linh, P. G. (2023). Predicting water quality index (wqi) by feature selection and machine learning: A case study of an kim hai irrigation system. Ecological Informatics, 74, 101991.

    Article  Google Scholar 

  158. Zeng, Y. F., Chen, C.-T., & Lin, G.-F. (2023). Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agricultural Water Management, 280, 108216.

    Article  Google Scholar 

  159. Franco, D., VK, P., & GR, M. S. (2022). Real time soil moisture (RTSM) based irrigation scheduling to improve yield and water-use efficiency of green pea (Pisum sativum l.) grown in north India. Agronomy, 12(2), 278.

    Article  Google Scholar 

  160. Silva, A. J. P. D., Coelho, E. F., Coelho Filho, M. A., & Souza, J. L. D. (2018). Water extraction and implications on soil moisture sensor placement in the root zone of banana. Scientia Agricola, 75, 95–101.

    Article  Google Scholar 

  161. Soulis, K. X., & Elmaloglou, S. (2018). Optimum soil water content sensors placement for surface drip irrigation scheduling in layered soils. Computers and electronics in agriculture, 152, 1–8.

    Article  Google Scholar 

  162. Olivera-Guerra, L. E., Laluet, P., Alt’es, V., Ollivier, C., Pageot, Y., & Paolini, G. (2023). Modeling actual water use under different irrigation regimes at district scale: Application to the FAO-56 dual crop coefficient method. Agricultural Water Management, 278, 108119.

    Article  Google Scholar 

  163. Amiri, Z., Gheysari, M., Mosaddeghi, M. R., Amiri, S., & Tabatabaei, M. S. (2022). An attempt to find a suitable place for soil moisture sensor in a drip irrigation system. Information Processing in Agriculture, 9(2), 254–265.

    Article  Google Scholar 

  164. Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., AbdRahman, M. K. I., Otuoze, A. O., & Ijike, O. D. (2021). Iot-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Information Processing in Agriculture, 8(2), 270–283.

    Article  Google Scholar 

  165. Pramanik, M., Khanna, M., Singh, M., Singh, D., Sudhishri, S., Bhatia, A., & Ranjan, R. (2022). Automation of soil moisture sensor-based basin irrigation system. Smart Agricultural Technology, 2, 100032.

    Article  Google Scholar 

  166. Xie, J., Chen, Y., Gao, P., Sun, D., Xue, X., Yin, D., & Wang, W. (2022). Smart fuzzy irrigation system for litchi orchards. Computers and Electronics in Agriculture, 201, 107287.

    Article  Google Scholar 

  167. Cordeiro, M., Markert, C., Araujo, S. S., Campos, N. G., Gondim, R. S., da Silva, T. L. C., & da Rocha, A. R. (2022). Towards smart farming: Fogenabled intelligent irrigation system using deep neural networks. Future Generation Computer Systems, 129, 115–124.

    Article  Google Scholar 

  168. Cheng, M., Jiao, X., Liu, Y., Shao, M., Yu, X., & Bai, Y. (2022). Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, 264, 107530.

    Article  Google Scholar 

  169. Togneri, R., dos Santos, D. F., Camponogara, G., Nagano, H., Cust’odio, G., Prati, R., & Kamienski, C. (2022). Soil moisture forecast for smart irrigation: The primetime for machine learning. Expert Systems with Applications, 207, 117653.

    Article  Google Scholar 

  170. Gaddikeri, V., Hasan, M., Kumar, D., Sarangi, A., & Alam, W. (2022). Performance analysis and measurement of soil moisture content by piezoresistive sensor. Mapan, 37(1), 149–160.

    Article  Google Scholar 

  171. Li, W., Liu, C., Yang, Y., Awais, M., Ying, P., Ru, W., & Cheema, M. (2022). A uav-aided prediction system of soil moisture content relying on thermal infrared remote sensing. International Journal of Environmental Science and Technology, 19(10), 9587–9600.

    Article  Google Scholar 

  172. Verma, N., Patel, R. K., & Choudhari, P. (2023). Watershed prioritization for soil conservation in a drought prone watershed of eastern india: Tel river basin, odisha. Geology, Ecology, and Landscapes, 7(4), 405–418.

    Article  Google Scholar 

  173. Wei, C., Dong, X., Yu, D., Liu, J., Reta, G., Zhao, W., & Su, B. (2022). An alternative to the grain for green program for soil and water conservation in the upper huaihe river basin. China. Journal of Hydrology: Regional Studies, 43, 101180.

    Google Scholar 

  174. Moursi, H., Youssef, M. A., & Chescheir, G. M. (2022). Development and application of drainmod model for simulating crop yield and water conservation benefits of drainage water recycling. Agricultural Water Management, 266, 107592.

    Article  Google Scholar 

  175. Kuhwald, M., Busche, F., Saggau, P., & Duttmann, R. (2022). Is soil loss due to crop harvesting the most disregarded soil erosion process? a review of harvest erosion. Soil and Tillage Research, 215, 105213.

    Article  Google Scholar 

  176. Boente, C., Albuquerque, M., Gallego, J., Pawlowsky-Glahn, V., & Egozcue, J. (2022). Compositional baseline assessments to address soil pollution: An application in langreo, spain. Science of The Total Environment, 812, 152383.

    Article  ADS  CAS  PubMed  Google Scholar 

  177. Dagliya, M., Satyam, N., & Garg, A. (2022). Biopolymer based stabilization of Indian desert soil against wind-induced erosion. Acta Geophysica, 71(1), 503–516.

    Article  ADS  Google Scholar 

  178. Wani, J. A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S., & Singh, S. (2022). Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Archives of Computational Methods in Engineering, 29(1), 641–677.

    Article  Google Scholar 

  179. Alqahtani, Y., Nawaz, M., Nazir, T., Javed, A., Jeribi, F., & Tahir, A. (2023). An improved deep learning approach for localization and recognition of plant leaf diseases. Expert Systems with Applications, 230, 120717.

    Article  Google Scholar 

  180. Mousavi, S., & Farahani, G. (2022). A novel enhanced vgg16 model to tackle grapevine leaves diseases with automatic method. IEEE Access, 10, 111564–111578.

    Article  Google Scholar 

  181. Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artificial Intelligence in Agriculture, 6, 23–33.

    Article  Google Scholar 

  182. Nagaraju, M., Chawla, P., Upadhyay, S., & Tiwari, R. (2022). Convolution network model based leaf disease detection using augmentation techniques. Expert Systems, 39(4), e12885.

    Article  Google Scholar 

  183. Vallabhajosyula, S., Sistla, V., & Kolli, V. K. K. (2022). Transfer learning-based deep ensemble neural network for plant leaf disease detection. Journal of Plant Diseases and Protection, 129(3), 545–558.

    Article  Google Scholar 

  184. Memon, M. S., Kumar, P., & Iqbal, R. (2022). Meta deep learn leaf disease identification model for cotton crop. Computers, 11(7), 102.

    Article  Google Scholar 

  185. Gajjar, R., Gajjar, N., Thakor, V. J., Patel, N. P., & Ruparelia, S. (2022). Realtime detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. The Visual Computer, 38(8), 2923–2938.

    Article  Google Scholar 

  186. Rezk, N. G., Attia, A. F., El-Rashidy, M. A., El-Sayed, A., & Hemdan, E.E.-D. (2022). An efficient plant disease recognition system using hybrid convolutional neural networks (cnns) and conditional random fields (crfs) for smart iot applications in agriculture. International Journal of Computational Intelligence Systems, 15(1), 1–21.

    Article  Google Scholar 

  187. Santhosh Kumar, R., Rajalingam, B., Deepan, P., JawaherlalNehru, G., & Bavankumar, S. (2022). Plant leaf disease prediction: A pldd net-svm model proposed using internet of thing (iot) and integrated learning model. Journal of Optoelectronics Laser, 41(9), 543–551.

    Google Scholar 

  188. Bhatia, A., Chug, A., Singh, A. P., Singh, R. P., & Singh, D. (2022). A machine learning-based spray prediction model for tomato powdery mildew disease. Indian Phytopathology, 75(1), 225–230.

    Article  Google Scholar 

  189. Babu, S., Rathore, S. S., Singh, R., Kumar, S., Singh, V. K., & Yadav, S. (2022). Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresource Technology, 360, 127566.

    Article  CAS  PubMed  Google Scholar 

  190. Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.

    Article  ADS  CAS  PubMed  Google Scholar 

  191. Kharola, S., Ram, M., Mangla, S. K., Goyal, N., Nautiyal, O., Pant, D., & Kazancoglu, Y. (2022). Exploring the green waste management problem in food supply chains: A circular economy context. Journal of Cleaner Production, 351, 131355.

    Article  Google Scholar 

  192. Fernando, Y., Tseng, M. L., Aziz, N., Ikhsan, R. B., & Wahyuni-TD, I. S. (2022). Waste-to-energy supply chain management on circular economy capability: An empirical study. Sustainable Production and Consumption, 31, 26–38.

    Article  Google Scholar 

  193. Shipley, N. J., Stewart, W. P., & van Riper, C. J. (2022). Negotiating agricultural change in the midwestern us: Seeking compatibility between farmer narratives of efficiency and legacy. Agriculture and Human Values, 39(4), 1465–1476.

    Article  Google Scholar 

  194. Ukaegbu, E., Jidere, C., Osuaku, S., & Obalum, S. (2023). Comparison of three land evaluation systems in capability assessment of soils of coastal plains sand in southeastern nigeria. Soil Security, 10, 100079.

    Article  Google Scholar 

  195. Hood, R. B., Liang, D., Chiu, Y.-H., Sandoval-Insausti, H., Chavarro, J. E., Jones, D., & Gaskins, A. J. (2022). Pesticide residue intake from fruits and vegetables and alterations in the serum metabolome of women undergoing infertility treatment. Environment International, 160, 107061.

    Article  CAS  PubMed  Google Scholar 

  196. Sinisterra-Solis, N., Sanju’an, N., Ribal, J., Estruch, V., & Clemente, G. (2023). An approach to regionalise the life cycle inventories of spanish agriculture: Monitoring the environmental impacts of orange and tomato crops. Science of The Total Environment, 856, 158909.

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Noura, H. N., Azar, J., Salman, O., Couturier, R., & Mazouzi, K. (2023). A deep learning scheme for efficient multimedia IoT data compression. Ad Hoc Networks, 138, 102998.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, research paper collection for survey and analysis were performed by Rishikesh and Ditipriya Sinha. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ditipriya Sinha.

Ethics declarations

Conflict of interest

Authors Rishikesh and Ditipriya Sinha declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rishikesh, Sinha, D. Traditional and Blockchain Based IoT and IIoT Security in the Context of Agriculture: A Survey. Wireless Pers Commun 133, 2267–2295 (2023). https://doi.org/10.1007/s11277-024-10866-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10866-1

Keywords