Abstract
In modern era wireless sensor networks used in many areas like military, engineering, surveillance, agriculture, healthcare, home etc. Healthcare is one of the most important areas where wireless sensor networks play an important role. In this paper a detailed review on wireless sensor networks in healthcare system is presented to find out the best communication technology and sensors used in healthcare system. Various sensors (pulse oximetry sensor, sweat rate sensor, glucose sensor, acceleration sensor and ECG electrode) are used in healthcare system are presented in this paper. Several communication techniques (Bluetooth, Zigbee, NFC, UWB and Wi-Fi) are used in healthcare system also discussed. Out of these all-communication technologies UWB is more powerful and widely used in recent time.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-024-10954-2/MediaObjects/11277_2024_10954_Fig6_HTML.png)
Similar content being viewed by others
Data Availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Abbreviations
- BP:
-
Blood Pressure
- ECG:
-
Electrocardiogram
- dBm:
-
Decibel-milliwatt
- EMG:
-
Electromyogram
- Gbps:
-
Giga Bit Per Second
- GHz:
-
Gigahertz
- HR:
-
Heart Rate
- IC:
-
Integrated Circuit
- IEEE:
-
Institute of Electrical and Electronics Engineers
- ISM:
-
Industrial Scientific and Medical
- Kbps:
-
Kilo Bit Per Second
- LED:
-
Light Emitting Diode
- Mbps:
-
Mega Bit Per Second
- NFC:
-
Near Field Communication
- PDA:
-
Personal Digital Assistant
- pH:
-
Pouvoir hydrogene
- RF:
-
Radio Frequency
- RFID:
-
Radio Frequency Identification
- UWB:
-
Ultra Wide Band
- WBAN:
-
Wireless Body Area Networks
- Wi-Fi:
-
Wireless Fidelity
- WMS:
-
Wearable Medical Sensor
- WSN:
-
Wireless Sensor Network
- 3 D:
-
Three Dimensional
References
Farsi, M., Elhosseini, M. A., Badawy, M., Arafat, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.
Lv, Y., Liu, Y., & Hua, J. (2019). A study on the application of WSN positioning technology to unattended areas. IEEE Access, 7, 38085–38099.
Vera-Amaro, R., Rivero-Angeles, M. E., & Luviano-Juarez, A. (2019). Design and analysis of wireless sensor networks for animal tracking in large monitoring polar regions using phase-type distributions and single sensor model. IEEE Access, 7, 45911–45929.
Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. arXiv preprint arXiv:1901.00511.
Guo, H., Johari, P., Jornet, J. M., & Sun, Z. (2016). Intra-body optical channel modeling for in vivo wireless nanosensor networks. IEEE Transactions on Nanobioscience, 15(1), 41–52.
Maw, H. A., Xiao, H., Christianson, B., & Malcolm, J. A. (2016). BTG-AC: Break-the-glass access control model for medical data in wireless sensor networks. IEEE Journal of Biomedical and Health Informatics, 20(3), 763–774.
Magalotti, D., Placidi, P., Dionigi, M., Scorzoni, A., & Servoli, L. (2016). Experimental characterization of a personal wireless sensor network for the medical X-ray dosimetry. IEEE Transactions on Instrumentation and Measurement, 65(9), 2002–2011.
Habib, C., Makhoul, A., Darazi, R., & Salim, C. (2016). Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Transactions on Industrial Informatics, 12(6), 2342–2352.
Liang, T., & Yuan, Y. J. (2016). Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors Journal, 16(23), 8186–8199.
Zheng, G., Shankaran, R., Orgun, M. A., Qiao, L., & Saleem, K. (2017). Ideas and challenges for securing wireless implantable medical devices: A review. IEEE Sensors Journal, 17(3), 562–576.
Mahmud, M. S., Wang, H., Esfar-E-Alam, A. M., & Fang, H. (2017). A wireless health monitoring system using mobile phone accessories. IEEE Internet of Things Journal, 4(6), 2009–2018.
Alaiad, A., & Zhou, L. (2017). Patients’ adoption of WSN-based smart home healthcare systems: An integrated model of facilitators and barriers. IEEE Transactions on Professional Communication, 60(1), 4–23.
Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. K. (2017). Wearable medical sensor-based system design: A survey. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 124–138.
Chen, S. L., Tuan, M. C., Lee, H. Y., & Lin, T. L. (2017). VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access, 5, 4077–4086.
Huang, H., Gong, T., Ye, N., Wang, R., & Dou, Y. (2017). Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3), 1227–1237.
Samarah, S., Al Zamil, M. G., Aleroud, A. F., Rawashdeh, M., Alhamid, M. F., & Alamri, A. (2017). An efficient activity recognition framework: Toward privacy-sensitive health data sensing. IEEE Access, 5, 3848–3859.
Yin, H., & Jha, N. K. (2017). A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 228–241.
Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.
Zhang, H., Liu, J., & Kato, N. (2016). Threshold tuning-based wearable sensor fault detection for reliable medical monitoring using Bayesian network model. IEEE Systems Journal, 12(2), 1886–1896.
Lin, J. Y., Chen, H. C., & Yen, M. Y. (2017). Sensor/antenna interface IC for implantable biomedical monitoring system. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1660–1667.
Saleh, N., Kassem, A., & Haidar, A. M. (2018). Energy-efficient architecture for wireless sensor networks in healthcare applications. IEEE Access, 6, 6478–6486.
Milici, S., Lázaro, A., Villarino, R., Girbau, D., & Magnarosa, M. (2018). Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sensors Journal, 18(5), 2145–2152.
Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S. C., & Zhang, Y. T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Transactions on Biomedical Engineering, 65(12), 2751–2759.
Yang, L., Zhou, Y. J., Zhang, C., Yang, X. M., Yang, X. X., & Tan, C. (2018). Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 109–115.
Wu, J. X., Huang, P. T., Li, C. M., & Lin, C. H. (2018). Bidirectional hetero-associative memory network with flexible sensors and cloud computing for blood leakage detection in intravenous and dialysis therapy. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 298–307.
Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.
Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.
Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.
Ge, X., Tu, S., Mao, G., & Wang, C. X. (2016). 5G ultra-dense cellular networks. IEEE Transactions on Wireless Communications, 23(1), 72_79.
Weber, S., Scharfschwerdt, P., Schauer, T., Seel, T., Kertzscher, U., & Affeld, K. (2013). Continuous wrist blood pressure measurement with ultrasound. Biomedical Engineering/Biomedizinische Technik, 58. https://doi.org/10.1515/bmt-2013-4124
Chan, M., EstèVe, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156.
Nagae, D., & Mase, A. (2010). Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing. Review of Scientific Instruments, 81(9), 094301.
Zanon, M., Sparacino, G., Facchinetti, A., Riz, M., Talary, M. S., Suri, R. E., et al. (2012). Non-invasive continuous glucose monitoring: Improved accuracy of point and trend estimates of the multisensor system. Medical & Biological Engineering & Computing, 50(10), 1047–1057.
Kovatchev, B. P., Renard, E., Cobelli, C., Zisser, H. C., Keith-Hynes, P., Anderson, S. M., et al. (2013). Feasibility of outpatient fully integrated closed-loop control: First studies of wearable artificial pancreas. Diabetes Care, 36(7), 1851–1858.
Kuo, Y. L., Culhane, K. M., Thomason, P., Tirosh, O., & Baker, R. (2009). Measuring distance walked and step count in children with cerebral palsy: An evaluation of two portable activity monitors. Gait & Posture, 29(2), 304–310.
Rand, D., Eng, J. J., Tang, P. F., Jeng, J. S., & Hung, C. (2009). How active are people with stroke? Use of accelerometers to assess physical activity. Stroke, 40(1), 163–168.
Kirste, T., Hoffmeyer, A., Koldrack, P., Bauer, A., Schubert, S., Schröder, S., & Teipel, S. (2014). Detecting the effect of Alzheimer’s disease on everyday motion behavior. Journal of Alzheimer’s Disease, 38(1), 121–132.
Weiss, A., Sharifi, S., Plotnik, M., van Vugt, J. P., Giladi, N., & Hausdorff, J. M. (2011). Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural Repair, 25(9), 810–818.
Baram, Y., & Lenger, R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation: Technology at the Neural Interface, 15(1), 48–52.
Lockman, J., Fisher, R. S., & Olson, D. M. (2011). Detection of seizure-like movements using a wrist accelerometer. Epilepsy & Behavior, 20(4), 638–641.
Cook, D. J., Thompson, J. E., Prinsen, S. K., Dearani, J. A., & Deschamps, C. (2013). Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology. The Annals of Thoracic Surgery, 96(3), 1057–1061.
Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., & Howard, J. (2003). Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development, 40(5; SUPP/2), 45–58.
Malhi, K., Mukhopadhyay, S. C., Schnepper, J., Haefke, M., & Ewald, H. (2010). A zigbee-based wearable physiological parameters monitoring system. IEEE Sensors Journal, 12(3), 423–430.
Jara, A. J., Lopez, P., Fernandez, D., Zamora, M. A., Ubeda, B., & Skarmeta, A. F. (2013). Communication protocol for enabling continuous monitoring of elderly people through near field communications. Interacting with Computers, 26(2), 145–168.
Kastner, P., Morak, J., Modre, R., Kollmann, A., Ebner, C., Fruhwald, F. M., & Schreier, G. (2010). Innovative telemonitoring system for cardiology: From science to routine operation. Applied Clinical Informatics, 1(02), 165–176.
Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., & Schreier, G. (2011). Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Transactions on Information Technology in Biomedicine, 16(1), 17–23.
Bernardi, P., Cicchetti, R., Pisa, S., Pittella, E., Piuzzi, E., & Testa, O. (2013). Design, realization, and test of a UWB radar sensor for breath activity monitoring. IEEE Sensors Journal, 14(2), 584–596.
Schleicher, B., Nasr, I., Trasser, A., & Schumacher, H. (2013). IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2076–2085.
Sakamoto, T., Imasaka, R., Taki, H., Sato, T., Yoshioka, M., Inoue, K., et al. (2015). Accurate heartbeat monitoring using ultra-wideband radar. IEICE Electronics Express, 12, 20141197.
Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanatà, A., & De Rossi, D. (2011). SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 503–510.
Coyle, S., Lau, K. T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., et al. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364–370.
Curone, D., Secco, E. L., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M., ... & Magenes, G. (2010). Smart garments for emergency operators: The ProeTEX project. IEEE Transactions on Information Technology in Biomedicine, 14(3), 694–701.
Kim, Y., Lee, S., & Lee, S. (2015). Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE Journal of Biomedical and Health Informatics, 20(1), 222–230.
Anliker, U., Ward, J. A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., et al. (2004). AMON: A wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine, 8(4), 415–427.
Tada, Y., Amano, Y., Sato, T., Saito, S., & Inoue, M. (2015). A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads. Fibers, 3(4), 463–477.
Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: An advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27(5), 671–691.
Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050–4059.
Yotter, R. A., & Wilson, D. M. (2004). Sensor technologies for monitoring metabolic activity in single cells-part II: Nonoptical methods and applications. IEEE Sensors Journal, 4(4), 412–429.
Wilson, D. M., Hoyt, S., Janata, J., Booksh, K., & Obando, L. (2001). Chemical sensors for portable, handheld field instruments. IEEE Sensors Journal, 1(4), 256–274.
Tremper, K. K. (1989). Pulse oximetry. Chest, 95(4), 713–715.
Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.
Wukitsch, M. W., Petterson, M. T., Tobler, D. R., & Pologe, J. A. (1988). Pulse oximetry: Analysis of theory, technology, and practice. Journal of Clinical Monitoring, 4(4), 290–301.
Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557–1558.
Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., et al. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.
Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., et al. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.
Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3), 808–812.
Trindade, I. G., Martins, F., Miguel, R., & Silva, M. S. (2014). Design and integration of wearable devices in textiles. Sensors & Transducers, 183(12), 42.
Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71(12), 2333–2348.
Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12(5), 5996–6022.
Kurihara, Y., Watanabe, K., & Yoneyama, M. (2011). Estimation of walking exercise intensity using 3-D acceleration sensor. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 495–500.
Erasala, N., & Yen, D. C. (2002). Bluetooth technology: A strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 24(3), 193–206.
Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.
Kim, T., Lee, H., & Chung, Y. (2010). Advanced universal remote controller for home automation and security. IEEE Transactions on Consumer Electronics, 56(4), 2537–2542.
Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.
Ghamari, M., Janko, B., Sherratt, R., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.
Ren, Y., Werner, R., Pazzi, N., & Boukerche, A. (2010). Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications, 17(1), 59–65.
Kumar, H., & Singh, P. K. (2021). Enhancing Network lifetime and Throughput in Heterogeneous Wireless Sensor Networks. Wireless Personal Communications, 120, 2971–2989. https://doi.org/10.1007/s11277-021-08594-x
Sreedevi, P., & Venkateswarlu, S. (2022). Comparative analysis of energy efficient routing protocols with optimization in WSN. International Journal on Interactive Design and Manufacturing. https://doi.org/10.1007/s12008-022-00958-2
Sreedevi, P., & Venkateswarlu, S. (2022). An efficient intra-cluster data aggregation and finding the best sink location in WSN using EEC-MA-PSOGA approach. International Journal of Communication Systems, 35, e5110.
Sreedevi, P., & Venkateswarlu, S. (2022). FOC-MOP: Fuzzy optimal clustering based multi-objective parameter route selection for energy efficiency. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09769-w
Funding
There is no funding for this work.
Author information
Authors and Affiliations
Contributions
The paper contains the different communication technologies, applications and sensors used in healthcare system. Applications of wireless sensor networks and sub-applications of wireless sensor networks also covered in manuscript.
Corresponding author
Ethics declarations
Conflicts of interest
There is no conflict of interest.
Code availability
There is no code available, this is a review article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kumar, H. Wireless Sensor Networks in Healthcare System: A Systematic Review. Wireless Pers Commun 134, 1013–1034 (2024). https://doi.org/10.1007/s11277-024-10954-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-024-10954-2