Skip to main content

Advertisement

Log in

Wireless Sensor Networks in Healthcare System: A Systematic Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In modern era wireless sensor networks used in many areas like military, engineering, surveillance, agriculture, healthcare, home etc. Healthcare is one of the most important areas where wireless sensor networks play an important role. In this paper a detailed review on wireless sensor networks in healthcare system is presented to find out the best communication technology and sensors used in healthcare system. Various sensors (pulse oximetry sensor, sweat rate sensor, glucose sensor, acceleration sensor and ECG electrode) are used in healthcare system are presented in this paper. Several communication techniques (Bluetooth, Zigbee, NFC, UWB and Wi-Fi) are used in healthcare system also discussed. Out of these all-communication technologies UWB is more powerful and widely used in recent time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

BP:

Blood Pressure

ECG:

Electrocardiogram

dBm:

Decibel-milliwatt

EMG:

Electromyogram

Gbps:

Giga Bit Per Second

GHz:

Gigahertz

HR:

Heart Rate

IC:

Integrated Circuit

IEEE:

Institute of Electrical and Electronics Engineers

ISM:

Industrial Scientific and Medical

Kbps:

Kilo Bit Per Second

LED:

Light Emitting Diode

Mbps:

Mega Bit Per Second

NFC:

Near Field Communication

PDA:

Personal Digital Assistant

pH:

Pouvoir hydrogene

RF:

Radio Frequency

RFID:

Radio Frequency Identification

UWB:

Ultra Wide Band

WBAN:

Wireless Body Area Networks

Wi-Fi:

Wireless Fidelity

WMS:

Wearable Medical Sensor

WSN:

Wireless Sensor Network

3 D:

Three Dimensional

References

  1. Farsi, M., Elhosseini, M. A., Badawy, M., Arafat, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  4. Lv, Y., Liu, Y., & Hua, J. (2019). A study on the application of WSN positioning technology to unattended areas. IEEE Access, 7, 38085–38099.

    Article  Google Scholar 

  5. Vera-Amaro, R., Rivero-Angeles, M. E., & Luviano-Juarez, A. (2019). Design and analysis of wireless sensor networks for animal tracking in large monitoring polar regions using phase-type distributions and single sensor model. IEEE Access, 7, 45911–45929.

    Article  Google Scholar 

  6. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. arXiv preprint arXiv:1901.00511.

  7. Guo, H., Johari, P., Jornet, J. M., & Sun, Z. (2016). Intra-body optical channel modeling for in vivo wireless nanosensor networks. IEEE Transactions on Nanobioscience, 15(1), 41–52.

    Article  Google Scholar 

  8. Maw, H. A., Xiao, H., Christianson, B., & Malcolm, J. A. (2016). BTG-AC: Break-the-glass access control model for medical data in wireless sensor networks. IEEE Journal of Biomedical and Health Informatics, 20(3), 763–774.

    Article  Google Scholar 

  9. Magalotti, D., Placidi, P., Dionigi, M., Scorzoni, A., & Servoli, L. (2016). Experimental characterization of a personal wireless sensor network for the medical X-ray dosimetry. IEEE Transactions on Instrumentation and Measurement, 65(9), 2002–2011.

    Article  Google Scholar 

  10. Habib, C., Makhoul, A., Darazi, R., & Salim, C. (2016). Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Transactions on Industrial Informatics, 12(6), 2342–2352.

    Article  Google Scholar 

  11. Liang, T., & Yuan, Y. J. (2016). Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors Journal, 16(23), 8186–8199.

    Google Scholar 

  12. Zheng, G., Shankaran, R., Orgun, M. A., Qiao, L., & Saleem, K. (2017). Ideas and challenges for securing wireless implantable medical devices: A review. IEEE Sensors Journal, 17(3), 562–576.

    Article  Google Scholar 

  13. Mahmud, M. S., Wang, H., Esfar-E-Alam, A. M., & Fang, H. (2017). A wireless health monitoring system using mobile phone accessories. IEEE Internet of Things Journal, 4(6), 2009–2018.

    Article  Google Scholar 

  14. Alaiad, A., & Zhou, L. (2017). Patients’ adoption of WSN-based smart home healthcare systems: An integrated model of facilitators and barriers. IEEE Transactions on Professional Communication, 60(1), 4–23.

    Article  Google Scholar 

  15. Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. K. (2017). Wearable medical sensor-based system design: A survey. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 124–138.

    Article  Google Scholar 

  16. Chen, S. L., Tuan, M. C., Lee, H. Y., & Lin, T. L. (2017). VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access, 5, 4077–4086.

    Article  Google Scholar 

  17. Huang, H., Gong, T., Ye, N., Wang, R., & Dou, Y. (2017). Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3), 1227–1237.

    Article  Google Scholar 

  18. Samarah, S., Al Zamil, M. G., Aleroud, A. F., Rawashdeh, M., Alhamid, M. F., & Alamri, A. (2017). An efficient activity recognition framework: Toward privacy-sensitive health data sensing. IEEE Access, 5, 3848–3859.

    Article  Google Scholar 

  19. Yin, H., & Jha, N. K. (2017). A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 228–241.

    Article  Google Scholar 

  20. Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.

    Article  Google Scholar 

  21. Zhang, H., Liu, J., & Kato, N. (2016). Threshold tuning-based wearable sensor fault detection for reliable medical monitoring using Bayesian network model. IEEE Systems Journal, 12(2), 1886–1896.

    Article  Google Scholar 

  22. Lin, J. Y., Chen, H. C., & Yen, M. Y. (2017). Sensor/antenna interface IC for implantable biomedical monitoring system. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1660–1667.

    Article  Google Scholar 

  23. Saleh, N., Kassem, A., & Haidar, A. M. (2018). Energy-efficient architecture for wireless sensor networks in healthcare applications. IEEE Access, 6, 6478–6486.

    Article  Google Scholar 

  24. Milici, S., Lázaro, A., Villarino, R., Girbau, D., & Magnarosa, M. (2018). Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sensors Journal, 18(5), 2145–2152.

    Article  Google Scholar 

  25. Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S. C., & Zhang, Y. T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Transactions on Biomedical Engineering, 65(12), 2751–2759.

    Article  Google Scholar 

  26. Yang, L., Zhou, Y. J., Zhang, C., Yang, X. M., Yang, X. X., & Tan, C. (2018). Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 109–115.

    Article  Google Scholar 

  27. Wu, J. X., Huang, P. T., Li, C. M., & Lin, C. H. (2018). Bidirectional hetero-associative memory network with flexible sensors and cloud computing for blood leakage detection in intravenous and dialysis therapy. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 298–307.

    Article  Google Scholar 

  28. Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.

    Article  Google Scholar 

  29. Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.

    Article  Google Scholar 

  30. Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.

    Article  Google Scholar 

  31. Ge, X., Tu, S., Mao, G., & Wang, C. X. (2016). 5G ultra-dense cellular networks. IEEE Transactions on Wireless Communications, 23(1), 72_79.

  32. Weber, S., Scharfschwerdt, P., Schauer, T., Seel, T., Kertzscher, U., & Affeld, K. (2013). Continuous wrist blood pressure measurement with ultrasound. Biomedical Engineering/Biomedizinische Technik, 58. https://doi.org/10.1515/bmt-2013-4124

  33. Chan, M., EstèVe, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156.

    Article  Google Scholar 

  34. Nagae, D., & Mase, A. (2010). Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing. Review of Scientific Instruments, 81(9), 094301.

    Article  Google Scholar 

  35. Zanon, M., Sparacino, G., Facchinetti, A., Riz, M., Talary, M. S., Suri, R. E., et al. (2012). Non-invasive continuous glucose monitoring: Improved accuracy of point and trend estimates of the multisensor system. Medical & Biological Engineering & Computing, 50(10), 1047–1057.

    Article  Google Scholar 

  36. Kovatchev, B. P., Renard, E., Cobelli, C., Zisser, H. C., Keith-Hynes, P., Anderson, S. M., et al. (2013). Feasibility of outpatient fully integrated closed-loop control: First studies of wearable artificial pancreas. Diabetes Care, 36(7), 1851–1858.

    Article  Google Scholar 

  37. Kuo, Y. L., Culhane, K. M., Thomason, P., Tirosh, O., & Baker, R. (2009). Measuring distance walked and step count in children with cerebral palsy: An evaluation of two portable activity monitors. Gait & Posture, 29(2), 304–310.

    Article  Google Scholar 

  38. Rand, D., Eng, J. J., Tang, P. F., Jeng, J. S., & Hung, C. (2009). How active are people with stroke? Use of accelerometers to assess physical activity. Stroke, 40(1), 163–168.

    Article  Google Scholar 

  39. Kirste, T., Hoffmeyer, A., Koldrack, P., Bauer, A., Schubert, S., Schröder, S., & Teipel, S. (2014). Detecting the effect of Alzheimer’s disease on everyday motion behavior. Journal of Alzheimer’s Disease, 38(1), 121–132.

    Article  Google Scholar 

  40. Weiss, A., Sharifi, S., Plotnik, M., van Vugt, J. P., Giladi, N., & Hausdorff, J. M. (2011). Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural Repair, 25(9), 810–818.

    Article  Google Scholar 

  41. Baram, Y., & Lenger, R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation: Technology at the Neural Interface, 15(1), 48–52.

  42. Lockman, J., Fisher, R. S., & Olson, D. M. (2011). Detection of seizure-like movements using a wrist accelerometer. Epilepsy & Behavior, 20(4), 638–641.

    Article  Google Scholar 

  43. Cook, D. J., Thompson, J. E., Prinsen, S. K., Dearani, J. A., & Deschamps, C. (2013). Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology. The Annals of Thoracic Surgery, 96(3), 1057–1061.

    Article  Google Scholar 

  44. Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., & Howard, J. (2003). Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development40(5; SUPP/2), 45–58.

  45. Malhi, K., Mukhopadhyay, S. C., Schnepper, J., Haefke, M., & Ewald, H. (2010). A zigbee-based wearable physiological parameters monitoring system. IEEE Sensors Journal, 12(3), 423–430.

    Article  Google Scholar 

  46. Jara, A. J., Lopez, P., Fernandez, D., Zamora, M. A., Ubeda, B., & Skarmeta, A. F. (2013). Communication protocol for enabling continuous monitoring of elderly people through near field communications. Interacting with Computers, 26(2), 145–168.

    Article  Google Scholar 

  47. Kastner, P., Morak, J., Modre, R., Kollmann, A., Ebner, C., Fruhwald, F. M., & Schreier, G. (2010). Innovative telemonitoring system for cardiology: From science to routine operation. Applied Clinical Informatics, 1(02), 165–176.

    Article  Google Scholar 

  48. Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., & Schreier, G. (2011). Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Transactions on Information Technology in Biomedicine, 16(1), 17–23.

    Article  Google Scholar 

  49. Bernardi, P., Cicchetti, R., Pisa, S., Pittella, E., Piuzzi, E., & Testa, O. (2013). Design, realization, and test of a UWB radar sensor for breath activity monitoring. IEEE Sensors Journal, 14(2), 584–596.

    Article  Google Scholar 

  50. Schleicher, B., Nasr, I., Trasser, A., & Schumacher, H. (2013). IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2076–2085.

    Article  Google Scholar 

  51. Sakamoto, T., Imasaka, R., Taki, H., Sato, T., Yoshioka, M., Inoue, K., et al. (2015). Accurate heartbeat monitoring using ultra-wideband radar. IEICE Electronics Express, 12, 20141197.

    Article  Google Scholar 

  52. Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanatà, A., & De Rossi, D. (2011). SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 503–510.

    Article  Google Scholar 

  53. Coyle, S., Lau, K. T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., et al. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364–370.

    Article  Google Scholar 

  54. Curone, D., Secco, E. L., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M., ... & Magenes, G. (2010). Smart garments for emergency operators: The ProeTEX project. IEEE Transactions on Information Technology in Biomedicine, 14(3), 694–701.

  55. Kim, Y., Lee, S., & Lee, S. (2015). Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE Journal of Biomedical and Health Informatics, 20(1), 222–230.

    Article  Google Scholar 

  56. Anliker, U., Ward, J. A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., et al. (2004). AMON: A wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine, 8(4), 415–427.

    Article  Google Scholar 

  57. Tada, Y., Amano, Y., Sato, T., Saito, S., & Inoue, M. (2015). A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads. Fibers, 3(4), 463–477.

    Article  Google Scholar 

  58. Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: An advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27(5), 671–691.

    Article  Google Scholar 

  59. Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050–4059.

    Article  Google Scholar 

  60. Yotter, R. A., & Wilson, D. M. (2004). Sensor technologies for monitoring metabolic activity in single cells-part II: Nonoptical methods and applications. IEEE Sensors Journal, 4(4), 412–429.

    Article  Google Scholar 

  61. Wilson, D. M., Hoyt, S., Janata, J., Booksh, K., & Obando, L. (2001). Chemical sensors for portable, handheld field instruments. IEEE Sensors Journal, 1(4), 256–274.

    Article  Google Scholar 

  62. Tremper, K. K. (1989). Pulse oximetry. Chest, 95(4), 713–715.

    Article  Google Scholar 

  63. Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.

    Article  Google Scholar 

  64. Wukitsch, M. W., Petterson, M. T., Tobler, D. R., & Pologe, J. A. (1988). Pulse oximetry: Analysis of theory, technology, and practice. Journal of Clinical Monitoring, 4(4), 290–301.

    Article  Google Scholar 

  65. Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557–1558.

    Article  Google Scholar 

  66. Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., et al. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.

    Article  Google Scholar 

  67. Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., et al. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.

    Article  Google Scholar 

  68. Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3), 808–812.

    Article  Google Scholar 

  69. Trindade, I. G., Martins, F., Miguel, R., & Silva, M. S. (2014). Design and integration of wearable devices in textiles. Sensors & Transducers, 183(12), 42.

    Google Scholar 

  70. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71(12), 2333–2348.

    Article  Google Scholar 

  71. Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12(5), 5996–6022.

    Article  Google Scholar 

  72. Kurihara, Y., Watanabe, K., & Yoneyama, M. (2011). Estimation of walking exercise intensity using 3-D acceleration sensor. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)42(4), 495–500.

  73. Erasala, N., & Yen, D. C. (2002). Bluetooth technology: A strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 24(3), 193–206.

    Article  Google Scholar 

  74. Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.

  75. Kim, T., Lee, H., & Chung, Y. (2010). Advanced universal remote controller for home automation and security. IEEE Transactions on Consumer Electronics, 56(4), 2537–2542.

    Article  Google Scholar 

  76. Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.

    Article  Google Scholar 

  77. Ghamari, M., Janko, B., Sherratt, R., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.

    Article  Google Scholar 

  78. Ren, Y., Werner, R., Pazzi, N., & Boukerche, A. (2010). Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications, 17(1), 59–65.

    Article  Google Scholar 

  79. Kumar, H., & Singh, P. K. (2021). Enhancing Network lifetime and Throughput in Heterogeneous Wireless Sensor Networks. Wireless Personal Communications, 120, 2971–2989. https://doi.org/10.1007/s11277-021-08594-x

    Article  Google Scholar 

  80. Sreedevi, P., & Venkateswarlu, S. (2022). Comparative analysis of energy efficient routing protocols with optimization in WSN. International Journal on Interactive Design and Manufacturing. https://doi.org/10.1007/s12008-022-00958-2

    Article  Google Scholar 

  81. Sreedevi, P., & Venkateswarlu, S. (2022). An efficient intra-cluster data aggregation and finding the best sink location in WSN using EEC-MA-PSOGA approach. International Journal of Communication Systems, 35, e5110.

    Article  Google Scholar 

  82. Sreedevi, P., & Venkateswarlu, S. (2022). FOC-MOP: Fuzzy optimal clustering based multi-objective parameter route selection for energy efficiency. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09769-w

    Article  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The paper contains the different communication technologies, applications and sensors used in healthcare system. Applications of wireless sensor networks and sub-applications of wireless sensor networks also covered in manuscript.

Corresponding author

Correspondence to Hradesh Kumar.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Code availability

There is no code available, this is a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H. Wireless Sensor Networks in Healthcare System: A Systematic Review. Wireless Pers Commun 134, 1013–1034 (2024). https://doi.org/10.1007/s11277-024-10954-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10954-2

Keywords

Navigation