Abstract
Technological developments in semiconductors have created previously unheard-of chances for creativity, but they have also increased the danger of hardware Trojans, which are malevolent modifications introduced into integrated circuits (ICs) during the design or production phases. This research review addresses the changing landscape of threats and responses by examining the most recent advancements and trends in hardware trojan detection and prevention approaches. Proactive protections against Trojan insertion and dissemination include methods like cryptographic primitives, trust verification protocols, and hardware obfuscation. The field of detection approaches has expanded to include a multi-layered approach that integrates emerging technologies like artificial intelligence and machine learning with more established methods like testing and design-time analysis. Furthermore, it is possible to improve resistance to Trojan assaults while reducing performance overhead by incorporating hardware security features like physically unclonable functions and secure compartments directly into the IC architecture. Moreover, various prevention algorithms, detecting challenges and effects of the HT in recent applications are summarized with its solutions.








Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Dong, C., Xu, Y., Liu, X., Zhang, F., He, G., & Chen, Y. (2020). Hardware Trojans in chips: a survey for detection and prevention. Sensors (Basel, Switzerland), 20(5165), 1–37. https://doi.org/10.3390/s20185165
Jin, Y. (2015). Introduction to hardware security. Electronics, 4, 763–784. https://doi.org/10.3390/electronics4040763
Liu, Y., Jin, Y., Nosratinia, A., & Makris, Y. (2017). silicon demonstration of hardware Trojan design and detection in wireless cryptographic ICs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25, 1506–1519. https://doi.org/10.1109/TVLSI.2016.2633348
Naveenkumar, R., Sivamangai, N. M., Napolean, A., & Janani, V. (2021). A survey on recent detection methods of the hardware trojans. In 2021 3rd International conference on signal processing and communication (ICPSC) (pp. 139-143). IEEE. https://doi.org/10.1109/ICSPC51351.2021.9451682
Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014). Hardware Trojan attacks: threat analysis and countermeasures. Proceedings of the IEEE, 102, 1229–1247. https://doi.org/10.1109/JPROC.2014.2334493
Hughes, L. A., & DeLone, G. J. (2007). Viruses, worms, and Trojan horses: serious crimes, nuisance, or both? Social Science Computer Review, 25(1), 78–98. https://doi.org/10.1177/0894439306292346
Rahman, M. A., Rahman, M. T., Kisacikoglu, M. C., & Akkaya, K. (2020). Intrusion detection systems-enabled power electronics for unmanned aerial vehicles. IEEE CyberPELS (CyberPELS), 2020, 1–5. https://doi.org/10.1109/CyberPELS49534.2020.9311545
Hu, N., Ye, M., & Wei, S. (2019). Surviving information leakage hardware Trojan attacks using hardware isolation. IEEE Transactions on Emerging Topics in Computing, 7(2), 253–261. https://doi.org/10.1109/TETC.2017.2648739
Deyati, S., Muldrey, B. J., & Chatterjee, A. (2016). Trojan detection in digital systems using current sensing of pulse propagation in logic gates. In 2016 17th International Symposium on Quality Electronic Design (ISQED) (pp. 350-355). IEEE. https://doi.org/10.1109/ISQED.2016.7479226
Ahmed, N., Tehranipoor, M., & Jayaram, V. (2006). Timing-based delay test for screening small delay defects. In Proceedings of the 43rd annual Design Automation Conference (pp. 320-325). https://doi.org/10.1145/1146909.1146993
Cheng, K.-T. (1993). Transition fault testing for sequential circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(12), 1971–1983. https://doi.org/10.1109/43.251160
PCI-SIG. PCI-Express Base Specification (2009), 3. Revision 2.1
Bhunia, S., MironAbramovici, D. A., Bradley, P., Hsiao, M. S., Plusquellic, J., & Tehranipoor, M. (2013). Protection against hardware Trojan attacks: towards a comprehensive solution. IEEE Design & Test, 30(3), 6–17. https://doi.org/10.1109/MDT.2012.2196252
Hennessy, A., Zheng, Y., & Bhunia, S. (2016) JTAG-based robust PCB authentication for protection against counterfeiting attacks. In 2016 21st asia and south pacific design automation conference (asp-dac) (pp. 56-61). IEEE. https://doi.org/10.1109/ASPDAC.2016.7427989
Dong, C., He, G. R., Liu, X. M., Yang, Y., & Guo, W. Z. (2019). A multi-layer Hardware Trojan protection framework for IoT chips. IEEE Access, 7, 23628–23639. https://doi.org/10.1109/ACCESS.2019.2896479
Zhang, J., & Gong, W. (2012). Atmospheric boundary layer observations based on raman lidar. In International Photonics and Optoelectronics Meetings (POEM) 2011: Optoelectronic Sensing and Imaging (Vol. 8332, pp. 169-175). SPIE. https://doi.org/10.1117/12.914769
Zhang, J., Tong, Y., Yang, X., Gong, J., & Gong, W. (2011, February). Detection of atmospheric composition based on lidar. In Journal of Physics: Conference Series (Vol. 276, No. 1, p. 012036). IOP Publishing. https://doi.org/10.1088/1742-6596/276/1/012036
Rosenfeld, K., & Karri, R. (2010). Attacks and defenses for JTAG. IEEE Design & Test of Computers, 27, 36–47. https://doi.org/10.1109/MDT.2010.9
JS, R., Ancajas, D. M., Chakraborty, K., & Roy, S. (2015). Runtime detection of a bandwidth denial attack from a rogue network-on-chip. In Proceedings of the 9th International Symposium on Networks-on-Chip (pp. 1-8). https://doi.org/10.1145/2786572.2786580
Vosatka, J. (2018). Introduction to hardware Trojans. In S. Bhunia & M. M. Tehranipoor (Eds.), The Hardware Trojan War (pp. 15–51). Cham: Springer International Publishing AG, Ltd. https://doi.org/10.1007/978-3-319-68511-3_2
Jin, Y., Maliuk, D., & Makris, Y. (2016). Hardware Trojan detection in analog/RF integrated circuits. In C. H. Chang & M. Potkonjak (Eds.), Secure System Design and Trustable Computing (pp. 241–268). Cham: Springer International Publishing Switzerland Ltd. https://doi.org/10.1007/978-3-319-14971-4_7
He, G., Dong, C., Huang, X., Guo, W., Liu, X., & Ho, T. Y. (2020). Htcatcher: Finite state machine and feature verifcation for large-scale neuromorphic computing systems. In Proceedings of the 2020 on great lakes symposium on VLSI (pp. 415-420). https://doi.org/10.1145/3386263.3406955
Li, H., Liu, Q., Zhang, J., & Lyu, Y. (2015). A survey of hardware trojan detection, diagnosis and prevention. In 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics) (pp. 173-180). IEEE. https://doi.org/10.1109/CADGRAPHICS.2015.41
Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., & Tehranipoor, M. (2016). Hardware Trojans: lessons learned after one decade of research. ACM Transactions on Design Automation of Electronic Systems, 22, 23. https://doi.org/10.1145/2906147
Khalid, F., Hasan, S. R., Hasan, O., & Awwad, F. R. (2018). Runtime hardware Trojan monitors through modeling burst mode communication using formal verification. Integration, 61, 62–76. https://doi.org/10.1016/j.vlsi.2017.11.003
Ma, P., Wang, Z., & Wang, Y. (2024). “A pre-silicon detection based on deep learning model for Hardware Trojans.” Journal of Circuits Systems and Computers, 33(08), 2450144. https://doi.org/10.1142/S0218126624501433
Hasegawa, K., Hidano, S., Nozawa, K., Kiyomoto, S., & Togawa, N. (2023). R-HTDetector: robust hardware-Trojan detection based on adversarial training. IEEE Transactions on Computers, 72(2), 333–345. https://doi.org/10.1109/TC.2022.3222090
Hussain, M., Guo, H., & Parameswaran, S. (2018). A customized authentication design for traffic hijacking detection on hardware-Trojan infected NoCs. Journal of Computer and Communications, 2018(6), 135–152. https://doi.org/10.4236/jcc.2018.61015
Bao, C., Forte, D., & Srivastava, A. (2015). Temperature tracking: toward robust run-time detection of hardware Trojans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34, 1577–1585. https://doi.org/10.1109/TCAD.2015.2424929
Dupuis, S., Flottes, M., Di Natale, G., & Rouzeyre, B. (2018). Protection against hardware Trojans with logic testing: proposed solutions and challenges ahead. IEEE Design & Test, 35, 73–90. https://doi.org/10.1109/MDAT.2017.2766170
Salmani, H., Tehranipoor, M., & Plusquellic, J. (2012). A novel technique for improving hardware Trojan detection and reducing Trojan activation time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 112–125. https://doi.org/10.1109/TVLSI.2010.2093547
Zhang, J., Yuan, F., Wei, L., Liu, Y., & Xu, Q. (2015). VeriTrust: verification for hardware trust. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34, 1148–1161. https://doi.org/10.1109/TCAD.2015.2422836
Xue, M., Gu, C., Liu, W., Yu, S., & O’Neill, M. (2020). Ten years of hardware Trojans: a survey from the attacker’s perspective. IET Computers & Digital Techniques, 14, 231–246. https://doi.org/10.1049/iet-cdt.2020.0041
Courbon, F., Loubet-Moundi, P., Fournier, J. J., & Tria, A. (2015, March). A high efficiency hardware trojan detection technique based on fast SEM imaging. In 2015 design, automation & test in Europe conference & exhibition (DATE) (pp. 788-793). IEEE.https://doi.org/10.7873/DATE.2015.1104
Hou, Y., He, H., Shamsi, K., Jin, Y., Wu, D., & Wu, H. (2019). On-chip analog trojan detection framework for microprocessor trustworthiness. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38, 1820–1830. https://doi.org/10.1109/TCAD.2018.2864246
Ghimire, A., Amsaad, F., Hossain, T., Hoque, T., & Sherif, A. (2023, August). FPGA Hardware Trojan Detection: Golden-Free Machine Learning Approach. In NAECON 2023-IEEE National Aerospace and Electronics Conference (pp. 181-186). IEEE. https://doi.org/10.1109/NAECON58068.2023.10365812
Amornpaisannon, B., Diavastos, A., Peh, L., & Carlson, T. E. (2024). Secure run-time hardware Trojan detection using lightweight analytical models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 43, 431–441. https://doi.org/10.1109/TCAD.2023.3316113
Li, H., Liu, Q., & Zhang, J. (2016). A survey of hardware Trojan threat and defense. Integration, 55, 426–437. https://doi.org/10.1016/j.vlsi.2016.01.004
Amelian, A., & Borujeni, S. E. (2018). A side-channel analysis for hardware trojan detection based on path delay measurement. Journal of Circuits, Systems and Computers, 27, 1850138. https://doi.org/10.1142/S0218126618501384
Zarrinchian, G., & Zamani, M. S. (2017). Latch-based structure: a high resolution and self-reference technique for hardware Trojan detection. IEEE Transactions on Computers, 66, 100–113. https://doi.org/10.1109/TC.2016.2576444
Tang, Y., Fang, L., & Li, S. (2019). Activity factor based hardware Trojan detection and localization. Journal of Electronic Testing, 35, 1–10. https://doi.org/10.1007/S10836-019-05803-1
Huang, D. C., Hsiao, C. F., Chang, T. W., et al. (2022). A security method of hardware Trojan detection using path tracking algorithm. EURASIP Journal on Wireless Communications and Networking, 2022, 81. https://doi.org/10.1186/s13638-022-02165-9
Ashok, M., Turner, M. J., Walsworth, R. L., Levine, E. V., & Chandrakasan, A. P. (2022). Hardware Trojan detection using unsupervised deep learning on quantum diamond microscope magnetic field images. ACM Journal on Emerging Technologies in Computing Systems, 18(4), 1–25. https://doi.org/10.1145/3531010
He, J., Zhao, Y., Guo, X., & Jin, Y. (2017). Hardware Trojan detection through chip-free electromagnetic side-channel statistical analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2939–2948. https://doi.org/10.1109/TVLSI.2017.2727985
Hicks, M., Finnicum, M., King, S. T., Martin, M. M., & Smith, J. M. (2010). Overcoming an untrusted computing base: Detecting and removing malicious hardware automatically. In 2010 IEEE symposium on security and privacy (pp. 159-172). IEEE. https://doi.org/10.1109/SP.2010.18
Zheng, Z. X., Li, Y. F., Yu, L., Tian, Y., & Liu, Z. L. (2014). Hardware Trojan detection technology based on probabilistic signature. Computing Engineering, 40, 18–22.
Bazzazi, A., Shalmani, M. T., & Hemmatyar, A. M. (2017). Hardware Trojan detection based on logical testing. Journal of Electronic Testing, 33, 381–395. https://doi.org/10.1007/s10836-017-5670-0
Huang, Y., Bhunia, S., & Mishra, P. (2018). Scalable test generation for trojan detection using side channel analysis. IEEE Transactions on Information Forensics and Security, 13, 2746–2760. https://doi.org/10.1109/TIFS.2018.2833059
Priyatharishini, M., & Devi, M. N. (2018). Detection of malicious circuit in hardware using compressive sensing algorithm. In 2018 Second international conference on advances in electronics, computers and communications (ICAECC) (pp. 1-5). IEEE. https://doi.org/10.1109/ICAECC.2018.8479492
Popat, J., & Mehta, U. S. (2016). Transition probabilistic approach for detection and diagnosis of Hardware Trojan in combinational circuits. IEEE Annual India Conference (INDICON), 2016, 1–6.
Govindan, V., & Chakraborty, R. S. (2018). Logic testing for hardware Trojan detection. In S. Bhunia & M. Tehranipoor (Eds.), The hardware Trojan war. Cham: Springer. https://doi.org/10.1007/978-3-319-68511-3_7
Naveenkumar, R., Sivamangai, N.M., Napolean, A., Puviarasu, A., & Saranya, G. (2022). Preventive Measure of SAT Attack by Integrating Anti-SAT on Locked Circuit for Improving Hardware Security. 2022 7th International Conference on Communication and Electronics Systems (ICCES), 756–760. https://doi.org/10.1109/ICCES54183.2022.9835923
Grailoo, M., Leier, M., & Pagliarini, S. (2022). Hardware Trojans for Confidence Reduction and Misclassifications on Neural Networks. In 2022 23rd International Symposium on Quality Electronic Design (ISQED) (pp. 1-6). IEEE. https://doi.org/10.1109/ISQED54688.2022.9806246
Chu, C., Jiang, L., Swany, M., & Chen, F. (2023). Qtrojan: A circuit backdoor against quantum neural networks. In ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
Khalid, F., Abbassi, I. H., Rehman, S., Kamboh, A. M., Hasan, O., & Shafique, M. (2022). ForASec: formal analysis of hardware Trojan-based security vulnerabilities in sequential circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(4), 1167–1180. https://doi.org/10.1109/TCAD.2021.3061524
Bhasin, S., Danger, J., Guilley, S., Ngo, X. T., & Sauvage, L. (2013). Hardware Trojan horses in cryptographic IP cores. Workshop on Fault Diagnosis and Tolerance in Cryptography, 2013, 15–29. https://doi.org/10.1109/FDTC.2013.15
Zhong, J., & Wang, J. (2018). Thermal images based Hardware Trojan detection through differential temperature matrix. Optik, 158, 855–860. https://doi.org/10.1016/j.ijleo.2017.12.145
Song, P., Stellari, F., Pfeiffer, D., Culp, J., Weger, A., Bonnoit, A., & Taubenblatt, M. (2011). MARVEL—Malicious alteration recognition and verification by emission of light. In 2011 IEEE International Symposium on Hardware-Oriented Security and Trust (pp. 117-121). IEEE. https://doi.org/10.1109/HST.2011.5955007
Bao, C., Forte, D., & Srivastava, A. (2014). On application of one-class SVM to reverse engineering-based hardware Trojan detection. In Fifteenth International Symposium on Quality Electronic Design (pp. 47-54). IEEE. https://doi.org/10.1109/ISQED.2014.6783305
Guo, X., Dutta, R. G., Jin, Y., Farahmandi, F., & Mishra, P. (2015, June). Pre-silicon security verification and validation: A formal perspective. In Proceedings of the 52nd annual design automation conference (pp. 1-6). https://doi.org/10.1145/2744769.2747939
Drzevitzky, S., Kastens, U., & Platzner, M. (2009). Proof-carrying hardware: towards runtime verification of reconfigurable modules. International Conference on Reconfigurable Computing and FPGAs, 2009, 189–194. https://doi.org/10.1109/ReConFig.2009.31
Love, E., Jin, Y., & Makris, Y. (2012). Proof-carrying hardware intellectual property: a pathway to trusted module acquisition. IEEE Transactions on Information Forensics and Security, 7, 25–40. https://doi.org/10.1109/TIFS.2011.2160627
Love, E., Jin, Y., & Makris, Y. (2011) Enhancing security via provably trustworthy hardware intellectual property. In 2011 IEEE international symposium on hardware-oriented security and trust (pp. 12-17). IEEE. https://doi.org/10.1109/HST.2011.5954988
Necula, G. C. (1997) Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (pp. 106-119). https://doi.org/10.1145/263699.263712
Appel, A. W. (2001) Foundational proof-carrying code. In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science (pp. 247-256). IEEE.https://doi.org/10.1109/FITS.2003.1264926
Appel, A. W., & McAllester, D. (2001). An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on Programming Languages and Systems, 23, 657–683. https://doi.org/10.1145/504709.504712
Banga, M., & Hsiao, M. S. (2010) Trusted RTL: Trojan detection methodology in pre-silicon designs. In 2010 IEEE international symposium on hardware-oriented security and trust (HOST) (pp. 56-59). IEEE.https://doi.org/10.1109/HST.2010.5513114
Rahman, M. T., Forte, D., Shi, Q., Contreras, G. K., & Tehranipoor, M. (2014) CSST: an efficient secure split-test for preventing IC piracy. In 2014 IEEE 23rd North Atlantic Test Workshop (pp. 43-47). IEEE. https://doi.org/10.1109/NATW.2014.17
Roy, J. A., Koushanfar, F., & Markov, I. L. (2008) EPIC: Ending piracy of integrated circuits. In Proceedings of the conference on Design, automation and test in Europe (pp. 1069-1074). https://doi.org/10.1109/DATE.2008.4484823
Xiao, K., Forte, D., & Tehranipoor, M. M. (2015). Efficient and secure split manufacturing via obfuscated built-in self-authentication. IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2015, 14–19. https://doi.org/10.1109/HST.2015.7140229
Suh, G. E., & Devadas, S. (2007) Physical unclonable functions for device authentication and secret key generation. In Proceedings of the 44th annual design automation conference (pp. 9-14).
Hospodar, G., Maes, R., & Verbauwhede, I. (2012) Machine learning attacks on 65nm Arbiter PUFs: Accurate modeling poses strict bounds on usability. In 2012 IEEE International workshop on Information forensics and security (WIFS) (pp. 37-42). IEEE. https://doi.org/10.1109/WIFS.2012.6412622
Pappu, R., Recht, B., Taylor, J., et al. (2002). Physical one-way functions. Science, 297(5589), 2026–2030. https://doi.org/10.1126/science.1074376
Gassend, B., Clarke, D., Van Dijk, M., & Devadas, S. (2002). Silicon physical random functions. In Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 148-160).https://doi.org/10.1145/586110.586132
Morozov, S., Maiti, A., & Schaumont, P. (2010). An analysis of delay based PUF implementations on FPGA. In Reconfigurable Computing: Architectures, Tools and Applications: 6th International Symposium, ARC 2010, Bangkok, Thailand, March 17-19, 2010. Proceedings 6 (pp. 382-387). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12133-3_37
Lee, J. W., Lim, D., Gassend, B., Suh, G. E., Van Dijk, M., & Devadas, S. (2004). A technique to build a secret key in integrated circuits for identification and authentication applications. In 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525) (pp. 176-179). IEEE. https://doi.org/10.1109/VLSIC.2004.1346548
Holcomb, D. E., Burleson, W. P., & Fu, K. (2009). Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Transactions Computers, 58(9), 1198–1210. https://doi.org/10.1109/TC.2008.212
Holcomb, D. E., Burleson, W. P., & Fu, K. (2007). Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In Proceedings of the Conference on RFID Security (Vol. 7, No. 2, p. 01).
Böhm, C., Hofer, M., & Pribyl, W. (2011). A microcontroller sram-puf. In 2011 5th International Conference on Network and System Security (pp. 269-273). IEEE. https://doi.org/10.1109/ICNSS.2011.6060013
Vijayakumar, V., Patil, V., & Kundu, S. (2017). On improving reliability of SRAM-based physically unclonable functions. Journal of Low Power Electronics and Applications, 7(1), 2. https://doi.org/10.3390/jlpea7010002
Cambou, B., & Orlowski, M. (2016). PUF designed with Resistive RAM and Ternary States. In Proceedings of the 11th Annual Cyber and Information Security Research Conference (pp. 1-8). https://doi.org/10.1145/2897795.2897808
Helfmeier, C., Boit,C. Nedospasov, D. Tajik, S. Seifert, J.-P. (2014). Physical vulnerabilities of physically unclonable functions, In Proceedings of the Conference on Design, Automation & Test in Europe, European Design and Automation Association (pp. 1–4) https://doi.org/10.7873/DATE.2014.363
Siddik, M. A. B., & Alam, S. H. (2023) PUF-based Hardware Trojan: Design and Novel Attack on Encryption Circuit. In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-5). IEEE. https://doi.org/10.1109/ECCE57851.2023.10101599.
Naveenkumar, R., Sivamangai, N. M., Napolean, A., et al. (2023). Design of INV/BUFF logic locking for enhancing the hardware security. Journal of Electronic Testing, 39, 141–153. https://doi.org/10.1007/s10836-023-06061-y
Hou, J., Liu, Z., Yang, Z., & Yang, C. (2024). Hardware Trojan attacks on the reconfigurable interconnections of field-programmable gate array-based convolutional neural network accelerators and a physically unclonable function-based countermeasure detection technique. Micromachines., 15(1), 149. https://doi.org/10.3390/mi15010149
Perez, T. D., & Pagliarini, S. N. (2020). a survey on split manufacturing: attacks, defenses, and challenges. IEEE Access, 8, 184013–184035. https://doi.org/10.1109/ACCESS.2020.3029339
Imeson, F., Emtenan, A., Garg, S., & Tripunitara, M. (2013) Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation. In 22nd USENIX Security Symposium (USENIX Security 13) (pp. 495-510).
Hill, B., Karmazin, R., Otero, C. T. O., Tse, J., & Manohar, R. (2013) A split-foundry asynchronous FPGA. In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference (pp. 1-4). IEEE. https://doi.org/10.1109/CICC.2013.6658536
Karmazin, R., Otero, C.T., & Manohar, R. (2013). cellTK: Automated Layout for Asynchronous Circuits with Nonstandard Cells. 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems (pp. 58–66). https://doi.org/10.1109/ASYNC.2013.27
Xie, Y., Bao, C., & Srivastava, A. (2017). Security-aware 2.5D integrated circuit design flow against hardware IP piracy. Computer, 50, 62–71. https://doi.org/10.1109/MC.2017.121
Roy, J. A., Koushanfar, F., & Markov, I. L. (2010). Ending piracy of integrated circuits. Computer, 43, 30–38. https://doi.org/10.1109/MC.2010.284
Rajendran, J., Kanuparthi, A. K., Zahran, M. M., Addepalli, S., Ormazabal, G., & Karri, R. (2013). Securing processors against insider attacks: a circuit-microarchitecture co-design approach. IEEE Design & Test, 30, 35–44. https://doi.org/10.1109/MDAT.2013.2249554
Rajendran, J., Pino, Y., Sinanoglu, O., & Karri, R. (2012) Logic encryption: A fault analysis perspective. In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 953-958). IEEE. https://doi.org/10.1109/DATE.2012.6176634
Chakraborty, R. S., & Bhunia, S. (2009) Security against hardware Trojan through a novel application of design obfuscation. In Proceedings of the 2009 International Conference on Computer-Aided Design (pp. 113-116). https://doi.org/10.1145/1687399.1687424
Chakraborty, R. S., & Bhunia, S. (2011). Security against hardware Trojan attacks using key-based design obfuscation. Journal of Electronic Testing, 27(6), 767–785. https://doi.org/10.1007/s10836-011-5255-2
Baumgarten, A., Tyagi, A., & Zambreno, J. (2010). Preventing IC piracy using reconfigurable logic barriers. IEEE Design & Test of Computers, 27(1), 66–75. https://doi.org/10.1109/MDT.2010.24
Yasin, M., Mazumdar, B., Ali, S. S., & Sinanoglu, O. (2015) Security analysis of logic encryption against the most effective side-channel attack: DPA. In 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) (pp. 97-102). IEEE. https://doi.org/10.1109/DFT.2015.7315143
Chakraborty, A., et al. (2020). Keynote: a disquisition on logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10), 1952–1972. https://doi.org/10.1109/TCAD.2019.2944586
Tajik, S., Dietz, E., Frohmann, S., Dittrich, H., Nedospasov, D., Helfmeier, C., Seifert, J., Boit, C., & Hübers, H. (2016). Photonic side-channel analysis of arbiter PUFs. Journal of Cryptology, 30, 550–571. https://doi.org/10.1007/s00145-016-9228-6
Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F., & Burleson, W. P. (2014). Efficient power and timing side channels for physical unclonable functions. CHES. https://doi.org/10.1007/978-3-662-44709-3_26
Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., & Sigl, G. (2013). Localized electromagnetic analysis of RO PUFs. In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 19-24). IEEE. https://doi.org/10.1109/HST.2013.6581559
Helfmeier, C., Boit, C., Nedospasov, D., & Seifert, J. P. (2013). Cloning physically unclonable functions. In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (pp. 1-6). IEEE. https://doi.org/10.1109/HST.2013.6581556
Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G., Schmidhuber, J., Burleson, W. P., & Devadas, S. (2013). PUF Modeling Attacks on Simulated and Silicon Data. IEEE Transactions on Information Forensics and Security, 8, 1876–1891. https://doi.org/10.1109/TIFS.2013.2279798
Zeitouni, S., Oren, Y., Wachsmann, C., Koeberl, P., & Sadeghi, A. (2016). Remanence decay side-channel: the PUF case. IEEE Transactions on Information Forensics and Security, 11, 1106–1116. https://doi.org/10.1109/TIFS.2015.2512534
Gao, Y., Al-Sarawi, S. F., & Abbott, D. (2020). Physical unclonable functions. Nature Electronics, 3, 81–91. https://doi.org/10.1038/s41928-020-0372-5
Naveenkumar, R., Sivamangai, N., Napolean, A., Sridevi, S., Priya, S., & Sivamangai, N. M. (2022). Design and evaluation of XOR arbiter physical unclonable function and its implementation on FPGA in hardware security applications. Journal of Electronic Testing, 38, 653–666. https://doi.org/10.1007/s10836-022-06034-7
Zhang, X., & Tehranipoor, M. (2011). Case study: Detecting hardware Trojans in third-party digital IP cores. In 2011 IEEE International Symposium on Hardware-Oriented Security and Trust (pp. 67-70). IEEE. https://doi.org/10.1109/HST.2011.5954998
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018) Foundations of machine learning. MIT press.
Kulkarni, A., Pino, Y., & Mohsenin, T. (2016) SVM-based real-time hardware Trojan detection for many-core platform. In 2016 17th International Symposium on Quality Electronic Design (ISQED) (pp. 362-367). IEEE.
Noor, N. Q. M., Sjarif, N. N. A., Azmi, N. H. F. M., Daud, S. M., & Ka-mardin, K. (2017). “Hardware Trojan identification using machine learning-based classification.” Journal of Telecommunication Electronic and Computer Engineering (JTEC), 9, 23–27.
Sun, C., Cheng, L. Y., Wang, L. W., Huang, Q., Huang, Y., & Feng, G. (2021). A machine learning method for hardware Trojan detection on real chips. AIP Advances, 11, 055006. https://doi.org/10.1063/5.0038773
Samyukta, K., & Ramesh, S. R. (2023). Detection of Hardware Trojan Horse using Unsupervised Learning Approach. In 2023 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (pp. 77-82). IEEE. https://doi.org/10.1109/DISCOVER58830.2023.10316694
Dong, C., et al. (2020). An unsupervised detection approach for hardware Trojans. IEEE Access, 8, 158169–158183. https://doi.org/10.1109/ACCESS.2020.3001239
Tang, W., Su, J., & Gao, Y. (2023). Hardware Trojan detection method based on dual discriminator assisted conditional generation adversarial network. Journal of Electronic Testing, 39, 1–12. https://doi.org/10.1007/s10836-023-06054-x
Aksoy, L., Nguyen, Q. L., Almeida, F., Raik, J., Flottes, M. L., Dupuis, S., & Pagliarini, S. (2021). High-level intellectual property obfuscation via decoy constants. In 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS) (pp. 1-7). IEEE.https://doi.org/10.1109/IOLTS52814.2021.9486714
Alaql, A., Hoque, T., Forte, D., & Bhunia, S. (2019) Quality obfuscation for error-tolerant and adaptive hardware IP protection. In 2019 IEEE 37th VLSI Test Symposium (VTS) (pp. 1-6). IEEE. https://doi.org/10.1109/VTS.2019.8758637
Sengupta, A., & Rathor, M. (2020). Enhanced security of dsp circuits using multi-key based structural obfuscation and physical-level watermarking for consumer electronics systems. IEEE Transactions on Consumer Electronics, 66, 163–172. https://doi.org/10.1109/TCE.2020.2972808
Lao, Y., & Parhi, K. K. (2014). Protecting DSP circuits through obfuscation. IEEE International Symposium on Circuits and Systems (ISCAS), 2014, 798–801. https://doi.org/10.1109/ISCAS.2014.6865256
Parhi, K. K. (1989). Algorithm transformation techniques for concurrent processors. Proceedings of the IEEE, 77(12), 1879–1895. https://doi.org/10.1109/5.48830
Chakraborty, R. S., & Bhunia, S. (2008). Hardware protection and authentication through netlist level obfuscation. In 2008 IEEE/ACM International Conference on Computer-Aided Design (pp. 674-677). IEEE. https://doi.org/10.1109/ICCAD.2008.4681649
Yuan, Y., Zhang, Y., Zhao, Y., Zhang, X., & Tang, M. (2021). Process variation-resistant golden-free hardware Trojan detection through a power side channel. Security and Communication Networks, 1(8839222), 15. https://doi.org/10.1155/2021/8839222
Becker, G. T., Regazzoni, F., Paar, C., & Burleson, W. P. (2013). Stealthy dopant-level hardware trojans. In Cryptographic Hardware and Embedded Systems-CHES 2013: 15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings 15 (pp. 197-214). Springer Berlin Heidelberg https://doi.org/10.1007/978-3-642-40349-1_12
Sharma, R., & Ranjan, P. (2021). A review: machine learning based hardware trojan detection. In 2021 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON) (pp. 1-4). IEEE. https://doi.org/10.1109/IEMECON53809.2021.9689165.
Ghimire, A., Alkurdi, M., Amsaad, F., Rahman, M. T., & Jhanjhi, N. Z. (2024). AI-enabled Hardware Trojan Detection for Secure and Trusted Context-Aware Embedded Systems. Authorea Preprints. https://doi.org/10.36227/techrxiv.170630749.99115711/v1
Piliposyan, G., & Khursheed, S. (2023). PCB hardware Trojan run-time detection through machine learning. IEEE Transactions on Computers, 72, 1958–1970. https://doi.org/10.1109/TC.2022.3230877
Yu, S., Gu, C., Liu, W., & O’Neill, M. (2021). Deep learning-based hardware Trojan detection with block-based netlist information extraction. IEEE Transactions on Emerging Topics in Computing, 10(4), 1837–1853. https://doi.org/10.1109/TETC.2021.3116484
Sami, M. S. U. I., et al. (2024). Advancing trustworthiness in system-in-package: a novel root-of-trust hardware security module for heterogeneous integration. IEEE Access, 12, 48081–48107. https://doi.org/10.1109/ACCESS.2024.3375874
Yan, M., Wei, H., & Onabajo, M. (2021). On-chip thermal profiling to detect malicious activity: system-level concepts and design of key building blocks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(3), 530–543. https://doi.org/10.1109/TVLSI.2020.3047020
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any competing interests.
Human and Animal Rights
Not Applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naveenkumar, R., Sivamangai, N.M. Hardware Trojans Detection and Prevention Techniques Review. Wireless Pers Commun 136, 1147–1182 (2024). https://doi.org/10.1007/s11277-024-11334-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-024-11334-6