Skip to main content
Log in

A Novel Machine Learning Algorithm for MANET Attack: Black Hole and Gray Hole

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile ad hoc networks (MANETs) are a class of wireless networks that can be operated without a fixed infrastructure. Due to the dynamics of decentralised systems, these networks are prone to different attacks like Black Hole Attack (BHA) and Gray Hole Attack (GHA). The basic requirement in this network is that all nodes are trusted nodes, but in a real-life scenario, some nodes may be malicious, so instead of transferring the data packet to the destination, it drops the data packet. Organisations have some ideas for preventing this attack but can fail due to improper methods, so the attack must be identified and addressed. This article uses the deep learning algorithm concept with a mutation-based artificial neural network (MBNN). It uses a swarm-based Cluster-Based Artificial Bee Colony (CBABC) optimisation technique to protect this network from BHA and GHA attacks. The proposed models performance has been improved by selecting the appropriate and best node for sending data packets. We have demonstrated experimental results suggesting that the proposed protocol outperforms existing work in the case of black and gray hole attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

We will deliver the data by the request.

References

  1. C. E. Perkins, E. M. Belding-Royer, and S. R. Das. (2003). Ad Hoc on-demand distance vector routing: IETF RFC 3561.

  2. T. Clausen and P. Jacquet.(2003). Optimised link state routing protocol (OLSR): IETF RFC 3626.

  3. D. B. Johnson, D. A. Maltz, Y. C. Hu, and J. G. Jetcheva. (2007). The dynamic source routing protocol for mobile Ad Hoc networks (DSR): IETF RFC 4728.

  4. Djenouri, D., Khelladi, L., & Badache, A. N. (2005). A survey of security issues in mobile ad hoc and sensor networks. IEEE Communications Surveys & Tutorials, 7, 2–28.

    Article  Google Scholar 

  5. Cai, R. J., Li, X. J., & Chong, P. H. J. (2018). An evolutionary self-cooperative trust scheme against routing disruptions in MANETs. IEEE transactions on Mobile Computing, 18(1), 42–55.

    Article  Google Scholar 

  6. Mohanapriya, M., & Krishnamurthi, I. (2014). Modified DSR protocol for detection and removal of selective black hole attack in MANET. Computers & Electrical Engineering, 40(2), 530–538.

    Article  Google Scholar 

  7. Arunmozhi, S. A., & Venkataramani, Y. (2012). Black hole attack detection and performance improvement in mobile ad-hoc network. Information Security Journal: A Global Perspective, 21(3), 150–158.

    Google Scholar 

  8. Schweitzer, N., Stulman, A., Margalit, R. D., & Shabtai, A. (2017). Contradiction based gray-hole attack minimisation for ad-hoc networks’,’. IEEE Trans. Mobile Comput., 16(8), 21742183.

    Article  Google Scholar 

  9. Martín-Campillo, A., Crowcroft, J., Yoneki, E., & Martí, R. (2013). Evaluating opportunistic networks in disaster scenarios. Journal of Network and Computer Applications, 36(2), 870–880.

    Article  Google Scholar 

  10. Plesse, T., Adjih, C., Minet, P., Laouiti, A., Plakoo, A., Badel, M., Muhlethaler, P., Jacquet, P., & Lecomte, J. (2005). OLSR performance measurement in a military mobile ad hoc network. Ad Hoc Networks, 3(5), 575–588.

    Article  Google Scholar 

  11. Toor, Y., Muhlethaler, P., Laouiti, A., & La Fortelle, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.

    Article  Google Scholar 

  12. Prasad, S. K., Rachna, J., Khalaf, O. I., & Le, D.-N. (2020). Map matching algorithm: Real time location tracking for smart security application. Telecommunication Radio Engineering, 79(13), 1189–1203.

    Article  Google Scholar 

  13. J Sen S Koilakonda A Ukil 2011 A mechanism for detection of cooperative black hole attack in mobile Ad Hoc networks In Proc. 2nd Second International Conference on Intelligent Systems, Modelling and Simulation. 338-343

  14. Khalaf, O. I., et al. (2020). efficient dual-cooperative bait detection scheme for collaborative attackers on mobile Ad-hoc networks. IEEE Access., 8, 227962–227969.

    Article  Google Scholar 

  15. Khan, D. M., et al. (2020). Black hole attack prevention in mobile Ad-Hoc network (MANET) using ant colony optimization technique. Information Technology and Control, 49(3), 308–319.

    Article  Google Scholar 

  16. V Gupta S Krishnamurthy M Faloutsos 2002 Denial of service attacks at the MAC layer in wireless ad hoc networks In Proceedings. MILCOM. 2 181123

  17. Djahel, S., Nait-Abdesselam, F., & Zhang, Z. (2010). Mitigating packet dropping problem in mobile ad hoc networks: Proposals and challenges. IEEE Communications Surveys & Tutorials., 13(4), 658–672.

    Article  Google Scholar 

  18. Jain, A. K., Tokekar, V., & Shrivastava, S. (2018). Security enhancement in MANETs using fuzzy-based trust computation against black hole attacks. In D. K. Mishra, A. T. Azar, & A. Joshi (Eds.), Information and Communication Technology (pp. 39–47). Springer.

    Chapter  Google Scholar 

  19. Shashwat, Y., Pandey, P., Arya, K. V., & Kumar, S. (2020). A modified AODV protocol for preventing blackhole attack in MANETs. Information Security Journal: A Global Perspective, 26(5), 240–248.

    Google Scholar 

  20. Mohammadani, K. H., Memon, K. A., Memon, I., Hussaini, N. N., & Fazal, H. (2020). Preamble time-division multiple access xed slot assignment protocol for secure mobile ad hoc networks. International Journal of Distributed Sensor Networks, 16(5), 1–18.

    Article  Google Scholar 

  21. Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., & Sun, C. (2019). DAPV: Diagnosing anomalies in MANETs routing with provenance and verification. IEEE Access, 7, 35302–35316.

    Article  Google Scholar 

  22. Kumari, A., Singhal, M., & Yadav, N. (2020). Blackhole attack implementation and its performance evaluation using AODV routing in MANET. In R. G, C. Joy, & R. Álvaro (Eds.), Inventive Communication and Computational Technologies (pp. 431–438). Springer.

    Chapter  Google Scholar 

  23. Gurung, S., & Chauhan, S. (2020). A survey of black-hole attack mitigation techniques in MANET: Merits, drawbacks, and suitability. Wireless Networks, 26(3), 1981–2011.

    Article  Google Scholar 

  24. Taranum, F., & Khan, K. U. R. (2020). Maneuvering black-hole attack using different trafffic generators in MANETs. In T. SM, T. L, M. S, N. P, M. J, C. JM, B. S, & M. D (Eds.), Intelligent Systems, Technologies and Applications (pp. 101–115). Springer.

    Chapter  Google Scholar 

  25. Majumder, S., & Bhattacharyya, D. (2020). Improvement of packet delivery fraction due to discrete attacks in MANET using MAD statistical approach. In M. Jyotsna Kumar & M. Somnath (Eds.), Proceedings of the Global AI Congress (pp. 187–196). Springer.

    Google Scholar 

  26. Venu, V. S., & Avula, D. (2018). Invincible AODV to detect black hole and gray hole attacks in mobile ad hoc networks. International Journal of Communication Systems, 31(6), e3518.

    Article  Google Scholar 

  27. Gurung, S., & Chauhan, S. (2018). A novel approach for mitigating gray hole attack in MANET. Wireless Networks, 24(2), 565–579.

    Article  Google Scholar 

  28. Gurung, S., & Chauhan, S. (2019). Performance analysis of black-hole attack mitigation protocols under gray-hole attacks in MANET. Wireless Networks, 25(3), 975–988.

    Article  Google Scholar 

  29. Shams, E. A., & Rizaner, A. (2018). A novel support vector machine based intrusion detection system for mobile ad hoc networks. Wireless Networks, 24(5), 1821–1829.

    Article  Google Scholar 

  30. Nadeem, A., & Howarth, M. P. (2013). A survey of MANET intrusion detection & prevention approaches for network layer attacks. IEEE Communications Surveys & Tutorials, 15(4), 2027–2045.

    Article  Google Scholar 

  31. Marchang, N., Datta, R., & Das, S. K. (2016). A novel approach for efficient usage of intrusion detection system in mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 66(2), 1684–1695.

    Article  Google Scholar 

  32. Bu, S., Yu, F. R., Liu, X. P., Mason, P., & Tang, H. (2011). Distributed combined authentication and intrusion detection with data fusion in high-security mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 60(3), 1025–1036.

    Article  Google Scholar 

  33. Shi, F., Liu, W., Jin, D., & Song, J. (2014). A cluster-based countermeasure against blackhole attacks in MANETs. Telecommunication Systems, 57(2), 119136.

    Article  Google Scholar 

  34. Chang, J.-M., Tsou, P.-C., Woungang, I., Chao, H.-C., & Lai, C.-F. (2015). Defending against collaborative attacks by malicious nodes in MANETs: A cooperative bait detection approach. IEEE Systems Journal, 9(1), 65–75.

    Article  Google Scholar 

  35. I. Nurcahyani and H. Hartadi. (2018). Performance analysis of ad-hoc on-demand distance vector (AODV) and dynamic source routing (DSR) under black hole attacks in mobile ad hoc network (MANET). In Proceedings. International Symposium on Electronics and Smart Devices (ISESD). pp. 1–5.

  36. S. Biswas, T. Nag, and S. Neogy.(2019). Trust based energy efcient detection and avoidance of black hole attack to ensure secure routing in MANET. In Proceedings. Applications and Innovations in Mobile Computing (AIMoC). pp. 157–164.

  37. Dhaka, A., Nandal, A., & Dhaka, R. S. (2015). Gray and black hole attack identification using control packets in MANETs. Procedia Computer Science, 54, 83–91.

    Article  Google Scholar 

  38. Zardari, Z. A., He, J., Zhu, N., Mohammadani, K., Pathan, M., Hussain, M., & Memon, M. (2019). A dual attack detection technique to identify black and gray hole attacks using an intrusion detection system and a connected dominating set in MANETs. Future Internet, 11(3), 61.

    Article  Google Scholar 

  39. Rani, P., Verma, S., & Nguyen, G. N. (2020). Mitigation of black hole and gray hole attack using swarm inspired algorithm with artificial neural network. IEEE Access, 8, 121755–121764.

    Article  Google Scholar 

  40. Zhang, M., et al. (2016). A clustering-based artificial bee colony algorithm. Theory, methodology, tools and applications for modeling and simulation of complex systems: 16th Asia simulation conference and scs autumn simulation multi-conference, asiasim/scs autumnsim 2016, Beijing, China, october 8–11, 2016, proceedings Part I (pp. 101–109). Springer.

    Chapter  Google Scholar 

  41. Canedo, D. R. C., & Romariz, A. R. S. R. (2019). Intrusion detection system in ad hoc networks with artificial neural networks and algorithm K-means. IEEE Latin American Transactions, 17(7), 1109–1115.

    Article  Google Scholar 

  42. Taha, A., Alsaqour, R., Uddin, M., Abdelhaq, M., & Saba, T. (2017). Energy efficient multipath routing protocol for mobile ad-hoc network using the fitness function. IEEE Access, 5, 10369–10381.

    Article  Google Scholar 

  43. Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile ad hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78–93.

    Article  Google Scholar 

  44. Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., & Kato, N. (2009). A dynamic anomaly detection scheme for AODV-based mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 58(5), 2471–2481.

    Article  Google Scholar 

  45. Gharavi, H. (2008). Multichannel mobile ad hoc links for multimedia communications. Proceedings of the IEEE, 96(1), 77–96.

    Article  Google Scholar 

  46. Fapojuwo, A. O., Salazar, O., & Sesay, A. B. (2004). Performance of a QoS-based multiple-route ad hoc on-demand distance vector protocol for mobile ad hoc networks. Canadian Journal of Electrical and Computer Engineering, 29(1–2), 149–155.

    Article  Google Scholar 

  47. Ohkura, Kazuhiro, et al.(2007). Mbeann: Mutation-based evolving artificial neural networks. European Conference on Artificial Life. Springer.

  48. Karaboga, D. (2010). Artificial bee colony algorithm. Scholarpedia, 5(3), 6915.

    Article  Google Scholar 

  49. Kalkha, H., Satori, H., & Satori, K. (2019). Preventing black hole attack in wireless sensor network using HMM. Procedia Computer Science, 148, 552–561. https://doi.org/10.1016/j.procs.2019.01.028

    Article  Google Scholar 

Download references

Funding

No funding was received from any organisation for conducting the study of the submitted work and preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Singh.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

Ethical Approval

This manuscript does not contain any studies with human participants or animals performed by any authors.

Informed Consent

The research papers used for the study of the submitted work have been cited in the manuscript and the details of the same have been included in the reference section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, M., Brijendra Kumar Joshi & Singh, U. A Novel Machine Learning Algorithm for MANET Attack: Black Hole and Gray Hole. Wireless Pers Commun 138, 41–66 (2024). https://doi.org/10.1007/s11277-024-11360-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11360-4

Keywords