Skip to main content

Advertisement

Log in

Radio Resource Allocation Fairness in Cooperative Cognitive Radio Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 25 September 2024

This article has been updated

Abstract

Imbalance and unfairness in resource allocation and utilization can lead to a degraded network environment where wireless network users experience poor quality of service (QoS) within the wireless networks. In multi-user wireless radio networks with constrained wireless network resources, such as power and bandwidth resources, uniform allocation of power or bandwidth may lead to unfairness in network resource management. The cooperative cognitive radio relay networks’ (CCRRN) radio resource allocation problem among multi-users is investigated in this paper through combined resource optimization. To facilitate fairness in the multi-user networks, the maxi–min criterion is employed. The max–min fairness ensures that when the wireless network attains max–min utility fairness, no user’s utility can be improved without degrading the utility performance of any other user. To maximize the worst-case user (max–min) capacity in the CCRRN using the power and bandwidth allocation strategy, a combined optimal resource allocation (COPBA) scheme is proposed. The max–min resource allocation optimization problem developed is observed to be convex. Efficient computer-based numerical optimization solver packages, such as SNOPT, exist that can solve convex optimization problems efficiently. The MATLAB software provides a robust integrated environment where the implementation of the SNOPT solver can be executed. Using the uniform bandwidth optimal power allocation (UBOPA) scheme as a benchmark, the fairness metric of the COPBA is evaluated and compared. Furthermore, the results showed the COPBA outperforming the UBOPA scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Yes.

Change history

  • 27 September 2024

    The original version of this article was revised: In this article the author’s name Uyoata Uyoata was incorrectly written as Uyota Uyota. The original article has been corrected.

  • 25 September 2024

    A Correction to this paper has been published: https://doi.org/10.1007/s11277-024-11578-2

References

  1. Li, F., Zhang, J., Liu, Z., Chan, K. Y., Yang, Y., & Xie, Y. (2023). Sum-rate maximization for cognitive relay NOMA systems with channel uncertainty. Computer Communications, 202, 183–190. https://doi.org/10.1016/j.comcom.2023.02.020

    Article  Google Scholar 

  2. Subedi, P., Alsadoon, A., Prasad, P. W. C., Rehman, S., Giweli, N., Imran, M., & Arif, S. (2021). Network slicing: A next generation 5G perspective. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1–26. https://doi.org/10.1186/s13638-021-01983-7

    Article  Google Scholar 

  3. Rachakonda, L. P., Siddula, M., & Sathya, V. (2024). A comprehensive study on IoT privacy and security challenges with focus on spectrum sharing in next-generation networks (5G/6G/beyond). High-Confidence Computing, 4(2), 100220. https://doi.org/10.1016/j.hcc.2024.100220

    Article  Google Scholar 

  4. Haghrah, A., Abdollahi, M. P., Azarhava, H., & Niya, J. M. (2023). A survey on the handover management in 5G-NR cellular networks: Aspects, approaches and challenges. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-023-02261-4

    Article  Google Scholar 

  5. Suriya, M., & Sumithra, M. G. (2022). Overview of spectrum sharing and dynamic spectrum allocation schemes in cognitive radio networks. In 2022 8th International conference on advanced computing and communication systems (ICACCS), (Vol. 1, pp. 934–937). https://doi.org/10.1109/ICACCS54159.2022.9785048

  6. Ahmad, W. S. H. M. W., Radzi, N. A. M., Samidi, F. S., Ismail, A., Abdullah, F., Jamaludin, M. Z., & Zakaria, M. N. (2020). 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access, 8, 14460–14488. https://doi.org/10.1109/ACCESS.2020.2966271

    Article  Google Scholar 

  7. Khasawneh, M., Azab, A., Alrabaee, S., Sakkal, H., & Bakhit, H. H. (2023). Convergence of IoT and cognitive radio networks: A survey of applications, techniques, and challenges. IEEE Access, 11, 71097–71112. https://doi.org/10.1109/ACCESS.2023.3294091

    Article  Google Scholar 

  8. Musa, A., Salameh, H. B., Halloush, R., Bataineh, R., & Qasaymeh, M. M. (2024). Variable rate power-controlled batch-based channel assignment for enhanced throughput in cognitive radio networks. International Journal of Intelligent Networks, 5, 175–183. https://doi.org/10.1016/j.ijin.2024.04.001

    Article  Google Scholar 

  9. Arteaga, A., Spedes, S. C., & Azurdia-Meza, C. A. (2022). Toward the coexistence of cognitive networks for vehicular communications on TVWS for IEEE std. 802.22. IEEE Transactions on Cognitive Communications and Networking, 8(3), 1316–1331.

    Article  Google Scholar 

  10. Shehadeh, H. A., Jebril, I. H., Wang, X., Chu, S.-C., & Idna, M. I. Y. (2023). Optimal topology planning of electromagnetic waves communication network for underwater sensors using multi-objective optimization algorithms (MOOAs). Automatika, 64(2), 315–326. https://doi.org/10.1080/00051144.2022.2123761

    Article  Google Scholar 

  11. Mwaimu, M. P., Majham, M., Ronoh, K. K., Michael, K., & Sinde, R. S. (2022). Improved resource allocation model for reducing interference among secondary users in TV white space for broadband services. IEEE Access, 10, 118981–118991. https://doi.org/10.1109/ACCESS.2022.3220628

    Article  Google Scholar 

  12. Ahmad, W. .S. .H. .M. .W., Radzi, N. .A. .M., Samidi, F. .S., Ismail, A., Abdullah, F., Jamaludin, M. .Z., & Zakaria, M. .N. (2020). 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access, 8, 14460–14488. https://doi.org/10.1109/ACCESS.2020.2966271

    Article  Google Scholar 

  13. Azdemir, T. (2019). Performance evaluation of NOMA-based cooperative communications over cascaded Rician fading channels. In 2019 27th signal processing and communications applications conference (SIU), (pp. 1– 4). https://doi.org/10.1109/SIU.2019.8806273

  14. Huaizhou, S. H. I., Prasad, R. V., Onur, E., & Niemegeers, I. G. M. M. (2014). Fairness in wireless networks: Issues, measures and challenges. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/SURV.2013.050113.00015

    Article  Google Scholar 

  15. Uppal, N., Gangadharappa, M. (2021). A survey on spectral and energy efficient next-generation wireless networks. In 2021 8th International conference on computing for sustainable global development (INDIACom), (pp. 155–160). https://doi.org/10.1109/INDIACom51348.2021.00028

  16. Siddiqi, M. Z., Wuttisittikulkij, L., Mirza, I. S., Chaudhary, S., Paranianifard, A. (2022). Adaptive modulation and power allocation in green cognitive radio networks. In 2022 19th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), (pp. 1–4) . https://doi.org/10.1109/ECTI-CON54298.2022.9795490

  17. Liu, C., Yin, J., Xu, Y. (2023). Adaptive live streaming for multi-user access with fairness guarantee. In 2023 IEEE International symposium on broadband multimedia systems and broadcasting (BMSB), (pp. 1–6) . https://doi.org/10.1109/BMSB58369.2023.10211604

  18. Di, Z., Zhong, Z., Pengfei, Q., Hao, Q., & Bin, S. (2024). Resource allocation in multi-user cellular networks: A transformer-based deep reinforcement learning approach. China Communications. https://doi.org/10.23919/JCC.ea.2021-0665.202401

    Article  Google Scholar 

  19. Panayiotou, T., & Ellinas, G. (2024). Balancing efficiency and fairness in resource allocation for optical networks. IEEE Transactions on Network and Service Management, 21(1), 389–401. https://doi.org/10.1109/TNSM.2023.3304426

    Article  Google Scholar 

  20. Rezaeinia, N., Gez, J., & Guajardo, M. (2023). On efficiency and the Jain’s fairness index in integer assignment problems. Computational Management Science, 20(1), 1–23. https://doi.org/10.1007/s10287-023-00477-9

    Article  MathSciNet  Google Scholar 

  21. Trankatwar, S., & Wali, P. (2024). Power allocation scheme for sum rate and fairness trade-off in downlink NOMA networks. Computer Communications, 221, 78–89. https://doi.org/10.1016/j.comcom.2024.04.018. . ID: 271515.

    Article  Google Scholar 

  22. Anis, F., Hussein, M., Diasty, S. E., Elazeem, M. H. A. (2024). On dynamic resource allocation schemes for D2D communications over ultra-dense 5G cellular networks. In 2024 6th International Youth conference on radio electronics, electrical and power engineering (REEPE), (pp. 1–6). https://doi.org/10.1109/REEPE60449.2024.10479760

  23. Awoyemi, B. S., Maharaj, J. T. B., & Alfa, A. S. (2016). Solving resource allocation problems in cognitive radio networks: A survey. EURASIP Journal on Wireless Communications and Networking.https://doi.org/10.1186/s13638-016-0673-6

    Article  Google Scholar 

  24. Zheng, H., Li, H., Hou, S., & Song, Z. (2018). Joint resource allocation with weighted max-min fairness for NOMA-enabled V2X communications. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2877199

    Article  Google Scholar 

  25. Sokun, H. U., Bedeer, E., Gohary, R. H., Yanikomeroglu, H. (2018). Fairness-oriented resource allocation for energy efficiency optimization in uplink OFDMA networks. In 2018 IEEE wireless communications and networking conference (WCNC), (pp. 1–6). https://doi.org/10.1109/WCNC.2018.8377327

  26. Gautam, S., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2021). Feasible point pursuit and successive convex approximation for transmit power minimization in SWIPT-multigroup multicasting systems. IEEE Transactions on Green Communications and Networking., 5, 884. https://doi.org/10.1109/TGCN.2021.3050736

    Article  Google Scholar 

  27. Noorivatan, N., Mahboobi, B. (2020). Joint user association and power-bandwidth allocation in heterogeneous cellular networks. In 2020 10th International symposium on telecommunications (IST), (pp. 96–102). https://doi.org/10.1109/IST50524.2020.9345814

  28. Wu, J., Shim, B. (2021). Power minimization of intelligent reflecting surface-aided uplink IoT networks. In 2021 IEEE wireless communications and networking conference (WCNC), (pp. 1–6). https://doi.org/10.1109/WCNC49053.2021.9417397

  29. Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-efficient UAV-to-user scheduling to maximize throughput in wireless. Networks. https://doi.org/10.1109/ACCESS.2020.2969357

    Article  Google Scholar 

  30. Zhu, Y., Hu, Y., Chang, Z., Schmeink, A. (2019). Throughput maximization of low-latency communication with imperfect CSI in finite blocklength regime. In 2019 IEEE wireless communications and networking conference (WCNC), (pp. 1–6). https://doi.org/10.1109/WCNC.2019.8885564

  31. Sun, X., & Dai, L. (2020). Towards fair and efficient spectrum sharing between LTE and WiFi in unlicensed bands: Fairness-constrained throughput maximization. IEEE Transactions on Wireless Communications, 19, 2713. https://doi.org/10.1109/TWC.2020.2967702

    Article  Google Scholar 

  32. Xie, R., Ji, H., Si, P., Li, M., Li, Y. (2010). Optimal joint power and transmission time allocation in cognitive radio networks. In 2010 IEEE Wireless Communication and Networking Conference, (pp. 1–5). https://doi.org/10.1109/WCNC.2010.5506153

  33. Naeem, M., Anpalagan, A., Jaseemuddin, M., & Lee, D. C. (2014). Resource allocation techniques in cooperative cognitive radio. Networks. https://doi.org/10.1109/SURV.2013.102313.00272

    Article  Google Scholar 

  34. Shah, S. M. T., Hamood, M. A., Arslan, H. (2021). Efficient spectral access in distributed cooperative cognitive radio networks. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), (pp. 1–6). https://doi.org/10.1109/VTC2021-Fall52928.2021.9625274

  35. Tang, J., Hincapie, R., Xue, G., Zhang, W., & Bustamante, R. (2010). Fair bandwidth allocation in wireless mesh networks with cognitive radios. IEEE Transactions on Vehicular Technology., 59, 1487. https://doi.org/10.1109/TVT.2009.2038478

    Article  Google Scholar 

  36. Tang, L., Wang, H., Chen, Q. (2010). Power allocation with max-min fairness for cognitive radio networks. In 2010 Global Mobile Congress, (pp. 1–5). https://doi.org/10.1109/GMC.2010.5634564

  37. Boyd, S., Kim, S. J., Vandenberghe, L., & Hassibi, A. (2007). A tutorial on geometric programming. Optimization and Engineering, 8(1), 67–127.

    Article  MathSciNet  Google Scholar 

  38. Li, L., Pal, M., Yang, Y. R. (2008). Proportional fairness in multi-rate wireless LANS. In IEEE INFOCOM 2008-The 27th Conference on Computer Communications, (pp. 1004–1012). https://doi.org/10.1109/INFOCOM.2008.154

  39. Tran, L., Cha, H., & Park, W. (2017). RF power harvesting: A review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0

    Article  Google Scholar 

  40. Poposka, M., Hadzi-Velkov, Z., & Pejoski, S. (2020). Fairness optimization of fixed-rate wireless networks with RF energy harvesting transmitters. IEEE Communications Letters., 24, 2859. https://doi.org/10.1109/LCOMM.2020.3020876

    Article  Google Scholar 

  41. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials., 20, 2294. https://doi.org/10.1109/COMST.2018.2835558

    Article  Google Scholar 

  42. Khales, F. A., Hodtani, G. A. (2017). An evaluation of the coverage region for downlink non-orthogonal multiple access (NOMA) based on power allocation factor. In 2017 Iran Workshop on Communication and Information Theory (IWCIT), (pp. 1–5). https://doi.org/10.1109/IWCIT.2017.7947675

  43. Ding, H., Zhao, F., Tian, J., & Zhang, H. (2020). Fairness-driven energy efficient resource allocation in uplink MIMO enabled HetNets. IEEE Access., 8, 37229. https://doi.org/10.1109/ACCESS.2020.2975301

    Article  Google Scholar 

  44. Gu, B., Zhang, C., Wang, H., Yao, Y., & Tan, X. (2019). Power control for cognitive M2M communications underlaying cellular with fairness concerns. IEEE Access., 7, 80789. https://doi.org/10.1109/ACCESS.2019.2914157

    Article  Google Scholar 

  45. Saif, R., Pourgharehkhan, Z., ShahbazPanahi, S., Bavand, M., & Boudreau, G. (2023). Underlay spectrum sharing in massive MIMO systems. IEEE Transactions on Cognitive Communications and Networking, 9(3), 647–663. https://doi.org/10.1109/TCCN.2023.3252542

    Article  Google Scholar 

  46. Thakur, S., & Singh, A. (2021). Underlay cognitive radio with instantaneous interference constraint: A secrecy performance. IEEE Transactions on Vehicular Technology., 70, 7839. https://doi.org/10.1109/TVT.2021.3093071

    Article  Google Scholar 

  47. Sharmila, A., Dananjayan, P. (2019). Spectrum sharing techniques in cognitive radio networks: A survey. In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), (pp. 1–4). https://doi.org/10.1109/ICSCAN.2019.8878714

  48. Alemdar, T. Z., Onur, E. (2021). Max-min fair bandwidth allocation in millimeter-wave radio clusters. In 2021 17th International Conference on Network and Service Management (CNSM), (pp. 77–83). https://doi.org/10.23919/CNSM52442.2021.9615530

Download references

Funding

No funding or grants were received by the authors for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Uyoata Uyoata and Oluwafemi Ipinnimo have contributed equally to this work.

Corresponding author

Correspondence to Enoruwa Obayiuwana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests in the preparation of this manuscript.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In this article the author’s name Uyoata Uyoata was incorrectly written as Uyota Uyota. The original article has been corrected.

Appendix

Appendix

For notation simplicity, we rewrite the lower bound constraints C1 and C2 of \( \textbf{P2} \) as;

$$\begin{aligned} \hspace{-80pt} Q_1(b_1,p_1) = R^i_{SR_k} -z \ge 0, \end{aligned}$$
(30)

and

$$\begin{aligned} \hspace{-80pt} Q_2(b_2,p_2) = R^i_{R_kD_i} -z \ge 0, \end{aligned}$$
(31)

respectively. The concave functions are negative semi-definite functions. In the optimization problem P2, the \(Q_1(b_1,p_1)\) and \( Q_2(b_2,p_2)\) bound the epigraph function of the optimization objective function. Our goal is to prove that they are concave functions with the facts that the functions are negative semi-definite. The function Q(xy) is said to be negative semi-definite, if and only if the Hessian of Q(xy) has eigenvalues ( \(\psi _l \)) that are non-positive. That is \( \psi _l \le 0, l=1,2,...L. \), where the Hessian matrix F(xy) is of dimension L. Also, \(R^i_{SR_k} = b_1 \log \left( 1+ \frac{p_1 g_1}{N_0b_1}\right) \) and \( R^i_{R_kD_i} = b_2 \log \left( 1+ \frac{p_2 g_2}{N_0b_2}\right) \).

Firstly, for the negative semi-definite proof of \( Q_1(b_1, p_1)\), we define the Hessian matrix \( H_{Q_1(b_1,p_1)} \) as;

$$\begin{aligned}{} & {} H_{Q_1(b_1,p_1)} \triangleq \left[ \begin{array}{cc} \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial b^2_1} &{} \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial b_1 p_1} \\ \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial p_1 b_1} &{} \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial p^2_1} \end{array} \right] , \end{aligned}$$
(32)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial b^2_1} = - \frac{g^2_1p^2_1}{(b_1(b_1 N_0 +p_1 g_1)^2)}, \end{aligned}$$
(33)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial p^2_1} = - \frac{b_1 g^2_1}{(b_1 N_0 +p_1 g_1)^2}, \end{aligned}$$
(34)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_1(b_1,p_1)}{\partial b_1 \partial p_1} = \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2}, \end{aligned}$$
(35)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_1(b_1,p_1)}{ \partial p_1 \partial b_1} = \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2}, \end{aligned}$$
(36)

Therefore, we have the Hessian matrix \( H_{Q_1(b_1,p_1)} \) as;

$$\begin{aligned} H_{Q_1(b_1,p_1)} =\left[ \begin{array}{cc} - \frac{g^2_1p^2_1}{(b_1(b_1 N_0 +p_1 g_1)^2)} &{} \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2} \\ \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2} &{} - \frac{b_1 g^2_1}{(b_1 N_0 +p_1 g_1)^2} \end{array} \right] . \end{aligned}$$
(37)

The eigenvalues \( \psi _1 \) and \(\psi _2 \) of \( H_{Q_1(b_1,p_1)}\) are the first principal minors of \( H_{Q_1(b_1,p_1)} \). Hence,

$$\begin{aligned}{} & {} \psi _1 = - \frac{g^2_1p^2_1}{(b_1(b_1 N_0 +p_1 g_1)^2)} <0, \end{aligned}$$
(38)
$$\begin{aligned}{} & {} \quad \psi _2 = - \frac{b_1 g^2_1}{(b_1 N_0 +p_1 g_1)^2}<0. \end{aligned}$$
(39)

The Hessian matrix determinant is the last eigenvalue \( \psi _3 \).

$$\begin{aligned} \psi _3 = \begin{array}{|cc|} - \frac{g^2_1p^2_1}{(b_1(b_1 N_0 +p_1 g_1)^2)} &{} \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2} \\ \frac{ g^2_1 p_1}{(b_1 N_0 +p_1 g_1)^2} &{} - \frac{b_1 g^2_1}{(b_1 N_0 +p_1 g_1)^2} \end{array} = 0. \end{aligned}$$
(40)

Therefore, with \( \psi _1 <0 \), \( \psi _2 <0 \) and \( \psi _3 = 0 \). Consequently, \( H_{Q_1(b_1,p_1)} \) is negative semi-definite. Thus in \( B^i_S \) and \( P^i_S \), \( R^i_{SR_k} \) is a concave function.

Secondly, for the negative semi-definite proof of \( Q_2 (b_2, p_2)\), we the Hessian matrix \( H_{Q_2(b_2,p_2)} \) as;

$$\begin{aligned}{} & {} H_{Q_2(b_2,p_2)} =\left[ \begin{array}{cc} \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial b^2_2} &{} \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial b_2 p_2} \\ \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial p_2 b_2} &{} \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial p^2_2} \end{array} \right] , \end{aligned}$$
(41)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial b^2_2} = - \frac{g^2_2p^2_2}{(b_2(b_2 N_0 +p_2 g_2)^2)}, \end{aligned}$$
(42)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial p^2_2} = - \frac{b_2 g^2_2}{(b_2 N_0 +p_2 g_2)^2}, \end{aligned}$$
(43)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_2(b_2,p_2)}{\partial b_2 \partial p_2} = \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2}, \end{aligned}$$
(44)
$$\begin{aligned}{} & {} \quad \frac{ \partial ^2 Q_2(b_2,p_2)}{ \partial p_2 \partial b_2} = \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2}, \end{aligned}$$
(45)

Thus, the Hessian matrix \( H_{Q_2(b_2,p_2)} \) is;

$$\begin{aligned} H_{Q_2(b_2,p_2)} =\left[ \begin{array}{cc} - \frac{g^2_2p^2_2}{(b_2(b_2 N_0 +p_2 g_2)^2)} &{} \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2} \\ \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2} &{} - \frac{b_2 g^2_2}{(b_2 N_0 +p_2 g_2)^2} \end{array} \right] . \end{aligned}$$
(46)

The corresponding eigenvalues \( \psi _1 \) and \(\psi _2 \) of \( H_{Q_2(b_2,p_2)}\) are the first principal minors of \( H_{Q_2(b_2,p_2)} \). Hence,

$$\begin{aligned}{} & {} \psi _1 = - \frac{g^2_2p^2_2}{(b_2(b_2 N_0 +p_2 g_2)^2)} <0, \end{aligned}$$
(47)
$$\begin{aligned}{} & {} \quad \psi _2 = - \frac{b_2 g^2_2}{(b_2 N_0 +p_2 g_2)^2}<0, \end{aligned}$$
(48)

while the Hessian matrix determinant is the eigenvalue \( \psi _3 \).

$$\begin{aligned} \psi _3 =\begin{array}{|cc|} - \frac{g^2_2p^2_2}{(b_2(b_2 N_0 +p_2 g_2)^2)} &{} \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2} \\ \frac{ g^2_2 p_2}{(b_2 N_0 +p_2 g_2)^2} &{} - \frac{b_2 g^2_2}{(b_2 N_0 +p_2 g_2)^2} \end{array} =0. \end{aligned}$$
(49)

Therefore, with \( \psi _1 <0 \), \( \psi _2 <0 \) and \( \psi _3 = 0 \), thus \( Q_2(b_2,p_2) \) is negative semi-definite. Since both \(R^i_{S R_k}\) and \(R^i_{R_k D_i} \) are concave functions, thus the objective function of optimization problem \( \textbf{ P2} \) is a concave function.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obayiuwana, E., Uyoata, U. & Ipinnimo, O. Radio Resource Allocation Fairness in Cooperative Cognitive Radio Relay Networks. Wireless Pers Commun 136, 2595–2619 (2024). https://doi.org/10.1007/s11277-024-11422-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11422-7

Keywords

Navigation