Skip to main content
Log in

On Use of LEO-GEO Hybrid Model for Optimized Data Traffic Performance

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As the world is moving towards the Internet of Things (IoT), more data rate is required with wider coverage and small delay. While the 5G supports the needed increased data rate, it suffers from a decreased coverage per tower. In contrast, the low population areas such as deserts, oceans, forests, and mountains contain most of the world's transportation such as highways, ships, and planes as well as large areas of agricultural lands that are all not supported by 5G. Consequently, LEO satellite constellations have been introduced to cover the earth's surface with a high-speed data rate. Each LEO satellite constellation requires 4000 + satellites and at least one ground base station (BS) for control, tracking, telemetry, and remote sensing functions. However, to support the needed downlink high-speed data rate demand, the LEO satellite constellation must add many BSs to increase the uplink data rate. As a result, the GEO communication satellites face great competitors in their market. This paper introduces the hybrid LEO-GEO satellite communication system to change this competition into cooperation that benefits both systems. In the hybrid LEO-GEO satellite communication system, this paper proposes maximizing the downlink utilization of both LEO and GEO satellites by the traffic-aware Artificial Expectation Detection (AED) technique. In such a technique, the trending multicast data choose the GEO link while the unicast data and control data choose the LEO link to maximize the downlink utilization efficiency. Our results show that using AED is power efficient and delay efficient while increasing the data rate by (100)x to (100k)x or decreasing the needed number of LEO BSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Barakat, B., Taha, A., Samson, R., Steponenaite, A., Ansari, S., Langdon, P. M., Wassell, I. J., Abbasi, Q. H., Imran, M. A., & Keates, S. (2021). 6G opportunities arising from Internet of Things use cases: A review paper. Futur. Internet, 13(6), 159.

    Article  Google Scholar 

  2. Giordani, M., & Zorzi, M. (2021). Non-terrestrial networks in the 6G era: Challenges and opportunities. IEEE Network, 35(2), 244–251.

    Article  Google Scholar 

  3. Iqbal, A., Tham, M.-L., & Chang, Y. C. (2022). Convolutional neural network based deep Q-network (CNN-DQN) resource management in cloud radio access network. China Commun., 19(10), 129–142.

    Article  Google Scholar 

  4. Khan, M. U., Azizi, M., García-Armada, A., & Escudero-Garzás, J. J. (2022). Unsupervised clustering for 5G network planning assisted by real data. IEEE Access, 10, 39269–39281.

    Article  Google Scholar 

  5. Mukherjee, A., Goswami, P., Khan, M. A., Manman, L., Yang, L., & Pillai, P. (2021). Energy-efficient resource allocation strategy in massive IoT for industrial 6G applications. IEEE Internet of Things Journal, 8(7), 5194–5201.

    Article  Google Scholar 

  6. González, C. C., Pizzi, S., Murroni, M., & Araniti, G. (2023). Multicasting over 6G non-terrestrial networks: A softwarization-based approach. IEEE Vehicular Technology Magazine, 18(1), 91–99.

    Article  Google Scholar 

  7. Wang, C.-X., Renzo, M. D., Stanczak, S., Wang, S., & Larsson, E. G. (2020). Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wireless Commun., 27(1), 16–23.

    Article  Google Scholar 

  8. Fu, Y., & Wang, X. (2022). Traffic prediction-enabled energy-efficient dynamic computing resource allocation in CRAN based on deep learning. IEEE Open J. Commun. Soc., 3, 159–175.

    Article  Google Scholar 

  9. Basharat, S., Hassan, S. A., Pervaiz, H., Mahmood, A., Ding, Z., & Gidlund, M. (2021). Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks. IEEE Wireless Commun., 28(6), 184–191.

    Article  Google Scholar 

  10. Janjua, M. B., Duranay, A. E., & Arslan, H. (2020). Role of wireless communication in healthcare system to cater disaster situations under 6G vision. Frontiers Commun Netw., 1, 1–10.

    Google Scholar 

  11. Geraci, G., López-Pérez, D., Benzaghta, M., & Chatzinotas, S. (2023). Integrating terrestrial and non-terrestrial networks: 3D opportunities and challenges. IEEE Communications Magazine, 61(4), 42–48.

    Article  Google Scholar 

  12. Mahmoud, H. H. H., Amer, A. A., & Ismail, T. (2021). 6G: A comprehensive survey on technologies, applications, challenges, and research problems. Trans. Emerg. Telecommun. Technol., 32(4), 1–14.

    Google Scholar 

  13. Zhou, H., Wang, Z., Min, G., & Zhang, H. (2023). UAV-aided computation offloading in mobile-edge computing networks: A Stackelberg game approach. IEEE Internet of Things Journal, 10(8), 6622–6633.

    Article  Google Scholar 

  14. Zhou, H., Wang, Z., Zheng, H., He, S., & Dong, M. (2023). Cost minimization-oriented computation offloading and service caching in mobile cloud-edge computing: An A3C-based approach. IEEE Transactions on Network Science and Engineering, 10(3), 1326–1338.

    Article  MathSciNet  Google Scholar 

  15. Zhou, H., Wang, Z., Cheng, N., Zeng, D., & Fan, P. (2022). Stackel berg game-based computation offloading method in cloud–edge computing networks. IEEE Internet of Things Journal, 9(17), 16510–16520.

    Article  Google Scholar 

  16. Giuliano, R., & Innocenti, E. (2023). Machine learning techniques for non-terrestrial networks. Electronics, 12(3), 652.

    Article  Google Scholar 

  17. Iqbal, A., Tham, M.-L., & Chang, Y. C. (2021). Double deep Q-network based energy-efficient resource allocation in cloud radio access network. IEEE Access, 9, 20440–20449.

    Article  Google Scholar 

  18. Tekbiyik, K., Kurt, G. K., Ekti, A. R., & Yanikomeroglu, H. (2022). Reconfigurable intelligent surfaces in action for non-terrestrial networks. IEEE Vehicular Technology Magazine, 17(3), 45–53.

    Article  Google Scholar 

  19. Park, K.-W., Kim, H. M., & Shin, O.-S. (2022). A survey on intelligent reflecting-surface-assisted UAV communications. Energies, 15(14), 5143.

    Article  Google Scholar 

  20. Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. (2023). 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Eng. J., 64, 245–274.

    Article  Google Scholar 

  21. Masur, P. H., Reed, J. H., & Tripathi, N. K. (2022). Artificial intelligence in open-radio access network. IEEE Aerospace and Electronic Systems Magazine, 37(9), 6–15.

    Article  Google Scholar 

  22. Jayalaxmi, P. L. S., Saha, R., Kumar, G., Conti, M., & Kim, T.-H. (2022). Machine and deep learning solutions for intrusion detection and prevention in IoTs: A survey. IEEE Access, 10, 121173–121192.

    Article  Google Scholar 

  23. Dahouda, M. K., Jin, S., & Joe, I. (2023). Machine learning-based solutions for handover decisions in non-terrestrial networks. Electronics, 12(8), 1759.

    Article  Google Scholar 

  24. Azari, M. M., Solanki, S., Chatzinotas, S., Kodheli, O., Sallouha, H., Colpaert, A., Mendoza Montoya, J. F., Pollin, S., Haqiqatnejad, A., Mostaani, A., Lagunas, E., & Ottersten, B. (2022). Evolution of non-terrestrial networks from 5G to 6G: A survey. IEEE Communication Surveys Tuts., 24(4), 2633–2672.

    Article  Google Scholar 

  25. Mozaffari, M., Lin, X., & Hayes, S. (2021). Toward 6G with connected sky: UAVs and beyond. IEEE Communications Magazine, 59(12), 74–80.

    Article  Google Scholar 

  26. Alzubaidi, O. T. H., Hindia, M. N., Dimyati, K., Noordin, K. A., Wahab, A. N. A., Qamar, F., & Hassan, R. (2022). Interference challenges and management in B5G network design: A comprehensive review. Electronics, 11(18), 2842.

    Article  Google Scholar 

  27. Das, S. K., Benkhelifa, F., Sun, Y., Abumarshoud, H., Abbasi, Q. H., Imran, M. A., & Mohjazi, L. (2023). Comprehensive review on ML-based RIS-enhanced IoT systems: Basics, research progress and future challenges. Computer Networks, 224, 109581.

    Article  Google Scholar 

  28. Fang, X., Feng, W., Wei, Te., Chen, Y., Ge, N., & Wang, C.-X. (2021). 5G embraces satellites for 6G ubiquitous IoT: Basic models for integrated satellite terrestrial networks. IEEE Internet of Things Journal, 9(18), 14399–14417.

    Article  Google Scholar 

  29. Du, J., Jiang, C., Zhang, H., Ren, Y., & Guizani, M. (2018). Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks. IEEE Journal on Selected Areas in Communication, 36(10), 2202–2217.

    Article  Google Scholar 

  30. Li, X., Feng, W., Chen, Y., Wang, C.-X., & Ge, N. (2020). Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks. IEEE Transactions on Communications, 68(4), 2355–2369.

    Article  Google Scholar 

  31. Karavolos, M., Nomikos, N., Vouyioukas, D., & Mathiopoulos, P. T. (2021). HST-NNC: A novel hybrid satellite-terrestrial communication with NOMA and network coding systems. IEEE Open Journal of the Communications Society, 2, 887–898.

    Article  Google Scholar 

  32. Nguyen, N.-T., Nguyen, H.-N., Nguyen, N.-L., Le, A.-T., Do, D.-T., & Voznak, M. (2021). Enhancing spectrum efficiency for multiple users in hybrid satellite-terrestrial networks. IEEE Access, 9, 50291–50300.

    Article  Google Scholar 

  33. Cui, G., Duan, P., Xu, L., et al. (2022). Latency optimization for hybrid GEO–LEO satellite-assisted IoT networks. IEEE Internet of Things Journal, 10(7), 6286–6297.

    Article  Google Scholar 

  34. Lv, W., Yang, P., Ding, Y., et al. (2023). Energy-efficient and QoS-aware computation offloading in GEO/LEO hybrid satellite networks. Remote Sensing, 15(13), 3299.

    Article  Google Scholar 

  35. Imam-Fulani, Y. O., Faruk, N., Sowande, O. A., Abdulkarim, A., Alozie, E., Usman, A. D., Adewole, K. S., Oloyede, A. A., Chiroma, H., Garba, S., Imoize, A. L., Baba, B. A., Musa, A., Adediran, Y. A., & Taura, L. S. (2023). 5G frequency standardization, technologies, channel models, and network deployment: Advances, challenges, and future directions. Sustainability, 15(6), 5173.

    Article  Google Scholar 

  36. Tripathi, S., Pandey, O. J., & Hegde, R. M. (2023). An optimal reflective elements grouping model for RIS-assisted IoT networks using Q-learning. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(8), 3214–3218.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Abdel Halem A. Zekry for helping us brainstorm the idea of this research. May Allah bless his soul in heaven.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

H.A. presented the paper idea, wrote the paper sections, built the MATLAB model, and discussed the findings. M.A. and K.Y. reviewed the paper idea and sections, supervised the model, and proofread the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hany Ali.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Abouelatta, M. & Youssef, K.Y. On Use of LEO-GEO Hybrid Model for Optimized Data Traffic Performance. Wireless Pers Commun 138, 641–657 (2024). https://doi.org/10.1007/s11277-024-11527-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11527-z

Keywords