Abstract
As the demand for high-speed communication in 5G increases, this article presents a development breakthrough in millimeter-wave spectrum solutions. The focus is on designing an ultra-wideband (UWB) circular patch antenna for 5G millimeter-wave applications. To address the problem of limited bandwidth and efficiency in existing designs, a UWB antenna operating in the 20–45 GHz range with a compact form factor of \(4 \times 4.8 \times 0.508 \,\,{\hbox {mm}}^{3}\) has been developed. A radial basis function neural network (RBFNN) was employed to analyze and optimize the antenna’s bandwidth characteristics. The resulting antenna exhibits a wide bandwidth of 25 GHz, a gain of 5.75 dB, and an impressive efficiency of 99%. To extend the capabilities of the design, a \(4 \times 4\) MIMO antenna system was developed, incorporating four copies of the proposed UWB single antenna, achieving an extended bandwidth of 25 GHz. The MIMO system, with dimensions of \(17.5 \times 17.5 \times 0.508\,\,{\hbox {mm}}^{3}\), demonstrates excellent performance with isolation exceeding 30 dB, a gain of 6 dB, and high efficiency. Rigorous measurements validate the designs, affirming their practical viability for future 5G mmWave applications. In conclusion, the proposed UWB antenna and MIMO system offer significant advancements in 5G mmWave communication, providing high performance in bandwidth, gain, and efficiency, supported by comprehensive simulations and measurements.
Similar content being viewed by others
Data availibility
Not Applicable.
Code Availability
Not applicable.
References
Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). Smart manufacturing and tactile internet based on 5G in industry 4.0: challenges applications and new trends. Electronics, 10(24), 3175. https://doi.org/10.3390/electronics10243175
Alraih, S., Shayea, I., Behjati, M., Nordin, R., Abdullah, N. F., Abu-Samah, A., & Nandi, D. (2022). Revolution or evolution? Technical requirements and considerations towards 6g mobile communications. Sensors, 22(3), 762. https://doi.org/10.3390/s22030762
Khawaja, W., Ozdemir, O., Yapici, Y., Erden, F., & Guvenc, I. (2020). Coverage enhancement for NLOS mmWave links using passive reflectors. IEEE Open Journal of the Communications Society, 1, 263–281. https://doi.org/10.1109/OJCOMS.2020.2969751
Hadani, R., Rakib, S., Molisch, A.F., Ibars, C., Monk, A., Tsatsanis, M., Delfeld, J., Goldsmith, A., & Calderbank, R. (2017). Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems. In: 2017 IEEE MTT-S International Microwave Symposium (IMS), pp. 681–683. IEEE, Honololu, HI, USA. https://doi.org/10.1109/MWSYM.2017.8058662. http://ieeexplore.ieee.org/document/8058662/ Accessed 2023-01-13
Dejen, A., Ridwan, M., Anguera, J., & Jayasinghe, J. (2022). Millimeter wave cellular communication performances and challenges: A survey. EAI Endorsed Transactions on Mobile Communications and Applications, 7(21), 5–5. https://doi.org/10.4108/eetmca.v7i21.2424
Ghosh, S., & Sen, D. (2019). An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access, 7, 83137–83161. https://doi.org/10.1109/ACCESS.2019.2924805
Addali, K. M., Bani Melhem, S. Y., Khamayseh, Y., Zhang, Z., & Kadoch, M. (2019). Dynamic mobility load balancing for 5G small-cell networks based on utility functions. IEEE Access, 7, 126998–127011. https://doi.org/10.1109/ACCESS.2019.2939936
Chen, Z., Zhu, G., Wang, S., Xu, Y., Xiong, J., Zhao, J., Luo, J., & Wang, X. (2019). \({{\rm M}}^{3}\): Multipath assisted wi-fi localization with a single access point. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2019.2950315
Alhosani, H., Rehman, M.H.u., Salah, K., Lima, C., & Svetinovic, D. (2020). Blockchain-based solution for multiple operator spectrum sharing (moss) in 5g networks. In: 2020 IEEE Globecom Workshops (GC Wkshps, pp. 1–6. https://doi.org/10.1109/GCWkshps50303.2020.9367561
Abbas, M. A., Allam, A., Gaafar, A., Elhennawy, H. M., & Sree, M. F. A. (2023). Compact UWB MIMO antenna for 5G millimeter-wave applications. Sensors, 23(5), 2702. https://doi.org/10.3390/s23052702
Painam, S., Anumala, V.S., Painam, K., Tatikonda, K.C., Miriyala, S., & P.P.M., P. (2019). Triple-UWB millimeter-wave MIMO antenna with improved isolation for 5G wireless applications. In: 2019 IEEE indian conference on antennas and propogation (InCAP), pp. 1–5. https://doi.org/10.1109/InCAP47789.2019.9134678
Sehrai, D. A., Asif, M., Khan, J., Abdullah, M., Shah, W. A., Alotaibi, S., & Ullah, N. (2022). A high-gain and wideband mimo antenna for 5g mm-wave-based iot communication networks. Applied Sciences. https://doi.org/10.3390/app12199530
Patel, A., Vala, A., Desai, A., Elfergani, I., Mewada, H., Mahant, K., Zebiri, C., Chauhan, D., & Rodriguez, J. (2022). Inverted-L shaped wideband MIMO antenna for millimeter-wave 5G applications. Electronics, 11(9), 1387. https://doi.org/10.3390/electronics11091387
Kornprobst, J., Wang, K., Hamberger, G., & Eibert, T. F. (2017). A mm-wave patch antenna with broad bandwidth and a wide angular range. IEEE Transactions on Antennas and Propagation, 65(8), 4293–4298. https://doi.org/10.1109/TAP.2017.2710261
Alhawari, A.R.H., Saeidi, T., Almawgani, A.H.M., Hindi, A.T., Alghamdi, H., Alsuwian, T., Awwad, S.A.B., & Imran, M.A. (2021). Wearable Metamaterial Dual-Polarized High Isolation UWB MIMO Vivaldi Antenna for 5G and Satellite Communications. Micromachines, 12(12). https://doi.org/10.3390/mi12121559
Alzidani, M., Afifi, I., Asaadi, M., & Sebak, A.-R. (2020). Ultra-Wideband Differential Fed Hybrid Antenna With High-Cross Polarization Discrimination for Millimeter Wave Applications. IEEE Access, 8, 80673–80683. https://doi.org/10.1109/ACCESS.2020.2988000
Ali, M. M. M., Al-Hasan, M., Mabrouk, I. B., & Denidni, T. A. (2022). Ultra-wideband hybrid magneto-electric dielectric-resonator dipole antenna fed by a printed RGW for millimeter-wave applications. IEEE Access, 10, 2028–2036. https://doi.org/10.1109/ACCESS.2021.3139828
Chen, H., Shao, Y., Zhang, Y., Zhang, C., & Zhang, Z. (2020). A millimeter-wave triple-band siw antenna with dual-sense circular polarization. IEEE Transactions on Antennas and Propagation, 68(12), 8162–8167. https://doi.org/10.1109/TAP.2020.2996806
Toktas, A., & Turkmen, H. A. (2023). Ultra-wideband monopole antenna with defected ground for millimeter-wave applications. Journal of Infrared, Millimeter, and Terahertz Waves, 44(1–2), 37–51. https://doi.org/10.1007/s10762-023-00904-7
Khan, M. A., Al Harbi, A. G., Kiani, S. H., Nordin, A. N., Munir, M. E., Saeed, S. I., Iqbal, J., Ali, E. M., Alibakhshikenari, M., & Dalarsson, M. (2022). mmWave Four-Element MIMO Antenna for Future 5G Systems. Applied Sciences. https://doi.org/10.3390/app12094280
Tiwari, P., Kaushik, M., Shastri, A., Ranjan, P., & Gahlaut, V. (2024). A 28 GHz wideband planar stepped-shaped MIMO antenna with isolating metallic sheet for 5G millimeter wave communications. AEU - International Journal of Electronics and Communications, 184, 155411. https://doi.org/10.1016/j.aeue.2024.155411
Sengar, S., Malik, P. K., Das, S., Islam, T., Singh, R., & Asha, S. (2024). A quad port mimo antenna designed with an x-shaped decoupling structure for wideband millimeter-wave (mm-wave) 5g fr2 new radio (n258/n261) bands applications. Wireless Personal Communications, 134(2), 857–880. https://doi.org/10.1007/s11277-024-10934-6
Ud Din, I., Alibakhshikenari, M., Virdee, B. S., Jayanthi, R. K. R., Ullah, S., Khan, S., See, C. H., Golunski, L., & Koziel, S. (2023). Frequency-selective surface-based mimo antenna array for 5G millimeter-wave applications. Sensors, 23(15), 7009. https://doi.org/10.3390/s23157009
Dey, A. B., Kumar, S., Arif, W., & Anguera, J. (2022). Elastomeric textile substrates to design a compact, low-profile AMC-based antenna for medical and IoT applications. IEEE Internet of Things Journal, 10(6), 4952–4969. https://doi.org/10.1109/JIOT.2022.3221360
Dey, A. B., Pattanayak, S. S., Mitra, D., & Arif, W. (2021). Investigation and design of enhanced decoupled uwb mimo antenna for wearable applications. Microwave and Optical Technology Letters, 63(3), 845–861. https://doi.org/10.1002/mop.32699
Dey, A. B., & Arif, W. (2022). Design and analysis of a cpw-fed flexible ultrawideband antenna for microwave imaging of breast cancer. International Journal of RF and Microwave Computer-Aided Engineering, 32(9), 23262. https://doi.org/10.1002/mmce.23262
Dey, A. B., Bhatt, U., & Arif, W. (2021). Design of a compact wearable ultrawideband mimo antenna with improved portisolation. Turkish Journal of Electrical Engineering and Computer Sciences, 29(2), 897–912. https://doi.org/10.3906/elk-2004-132
Balanis, C. A. (2015). Antenna theory: Analysis and design. Wiley.
Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. Wiley.
Volakis, J.L., Volakis, J.L., Chatterjee, A., & Kempel, L.C. (1998). Finite Element Method for Electromagnetics. Universities Press,
Sarkar, D., Khan, T., & Talukdar, F.A. (2021). Forward and Reverse Neural Network Modelling of Beveled Stepped Rectangular UWB Antennas. In: Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, pp. 103–113. Springer, Singapore. https://doi.org/10.1007/978-981-16-2709-5_9
Ibnyaich, S., Wakrim, L., & Hassani, M. M. (2021). Nonuniform Semi-patches for Designing an Ultra Wideband PIFA Antenna by Using Genetic Algorithm Optimization. Wireless Personal Communications, 117(2), 957–969. https://doi.org/10.1007/s11277-020-07905-y
Jamom, H.A., Abograin, A.A., & Abdalla, M.M. (2022). Design of a Vivaldi antenna using particle swarm optimization for 5G applications. In: 2022 IEEE 2nd International Maghreb meeting of the conference on sciences and techniques of automatic control and computer engineering (MI-STA), pp. 603–606. https://doi.org/10.1109/MI-STA54861.2022.9837591
Lala, A., Lala, K., & Singh, V.K. (2021). Bandwidth analysis of dual-feed slotted antenna using artificial neural networks. Emerging materials and advanced designs for wearable antennas. https://doi.org/10.4018/978-1-7998-7611-3.ch006. ISBN: 9781799876113 Pages: 70-84 Publisher: IGI Global. Accessed 2023-01-23
Dhanalakshmi, P., Palanivel, S., & Ramalingam, V. (2009). Classification of audio signals using SVM and RBFNN. Expert Systems with Applications, 36(3), 6069–6075.
Balanis, C.A. (2016). Antenna theory: Analysis and design. Wiley
Pavidha, V., & Jayakumar, A. (2023). Design and analysis of microstrip yagi uda antenna for 5g communication on fr4 substrate. In: 2023 2nd International conference on smart technologies and systems for next generation computing (ICSTSN), pp. 1–7. https://doi.org/10.1109/ICSTSN57873.2023.10151514
Sharma, S., Tripathi, C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 1–16.
Khabba, A., Amadid, J., Mohapatra, S., El Ouadi, Z., Ahmad, S., Ibnyaich, S., & Zeroual, A. (2022). UWB dual-port self-decoupled o-shaped monopole mimo antenna with small-size easily extendable design and high diversity performance for millimeter-wave 5g applications. Applied Physics A, 128(8), 725. https://doi.org/10.1007/s00339-022-05881-7
Hussain, M., Awan, W. A., Ali, E. M., Alzaidi, M. S., Alsharef, M., Elkamchouchi, D. H., Alzahrani, A., & Fathy Abo Sree, M. (2022). Isolation improvement of parasitic element-loaded dual-band mimo antenna for mm-wave applications. Micromachines, 13(11), 1918. https://doi.org/10.3390/mi13111918
Alibakhshikenari, M., Babaeian, F., Virdee, B. S., Aïssa, S., Azpilicueta, L., See, C. H., Althuwayb, A. A., Huynen, I., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2020). A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to sar and mimo antenna systems’’. IEEE Access, 8, 192965–193004. https://doi.org/10.1109/ACCESS.2020.3032826
Hussain, M., Awan, W. A., Alzaidi, M. S., Hussain, N., Ali, E. M., & Falcone, F. (2023). Metamaterials and their application in the performance enhancement of reconfigurable antennas: A review. Micromachines, 14(2), 349. https://doi.org/10.3390/electronics11040523
Khabba, A., Amadid, J., Ibnyaich, S., & Zeroual, A. (2022). Pretty-small four-port dual-wideband 28/38 ghz mimo antenna with robust isolation and high diversity performance for millimeter-wave 5g wireless systems. Analog Integrated Circuits and Signal Processing, 112(1), 83–102. https://doi.org/10.1007/s10470-022-02045-8
Amin, F., Saleem, R., Shabbir, T., Rehman, S. U., Bilal, M., & Shafique, M. F. (2019). A compact quad-element uwb-mimo antenna system with parasitic decoupling mechanism. Applied Sciences, 9(11), 2371. https://doi.org/10.3390/app9112371
Lu, Y., Huang, Y., Chattha, H. T., & Cao, P. (2011). Reducing ground-plane effects on UWB monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 147–150. https://doi.org/10.1109/LAWP.2011.2119459
Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071
Dwivedi, A. K., Sharma, A., Singh, A. K., & Singh, V. (2020). Design of dual band four port circularly polarized mimo dra for wlan/wimax applications. Journal of Electromagnetic Waves and Applications, 34(15), 1990–2009. https://doi.org/10.1080/09205071.2020.1801522
Varshney, G., Gotra, S., Pandey, V., & Yaduvanshi, R. S. (2019). Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Communication Networks, 21, 100246.
Khabba, A., Wakrim, L., Ibnyaich, S., & Hassani, M. M. (2022). Beam-steerable ultra-wide-band miniaturized elliptical phased array antenna using inverted-L-shaped modified inset feed and defected ground structure for 5G smartphones millimeter-wave applications. Wireless Personal Communications, 125(4), 3801–3833.
Khan, A. A., Jamaluddin, M. H., Aqeel, S., Nasir, J., Kazim, J. R., & Owais, O. (2017). Dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications. IET Microwaves, Antennas & Propagation, 11(1), 113–120. https://doi.org/10.1049/iet-map.2015.0745
Sellak, L., Khabba, A., Chabaa, S., Ibnyaich, S., Sarosh, A., Zeroual, A., & Baddou, A. (2023). ANFIS-Based \(4 \times 4\) Dual band circular MIMO antenna design with pretty-small size and large bandwidth for 5G millimeter-wave applications at 28/38 GHz. Journal of Infrared, Millimeter, and Terahertz Waves, 44(7), 551–601. https://doi.org/10.1007/s10762-023-00924-3
Kumar, A., Ansari, A. Q., Kanaujia, B. K., & Kishor, J. (2019). A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEU-International Journal of Electronics and Communications, 104, 35–43. https://doi.org/10.1016/j.aeue.2019.03.009
Rubani, Q., Gupta, S. H., & Rajawat, A. (2020). A compact MIMO antenna for WBAN operating at terahertz frequency. Optik, 207, 164447. https://doi.org/10.1016/j.ijleo.2020.164447
Kumar, A., Ansari, A. Q., Kanaujia, B. K., & Kishor, J. (2019). A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEU - International Journal of Electronics and Communications, 104, 35–43. https://doi.org/10.1016/j.aeue.2019.03.009
Sharawi, M. S. (2017). Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]. IEEE Antennas and Propagation Magazine, 59(2), 162–170.
Kumar, A., Ansari, A. Q., Kanaujia, B. K., Kishor, J., & Matekovits, L. (2021). A review on different techniques of mutual coupling reduction between elements of any mimo antenna. part 1: Dgss and parasitic structures. Radio Science, 56(3), 1–25. https://doi.org/10.1029/2020RS007122
Patel, A., Desai, A., Elfergani, I., Vala, A., Mewada, H., Mahant, K., Patel, S., Zebiri, C., Rodriguez, J., & Ali, E. (2022). UWB CPW fed 4-port connected ground MIMO antenna for sub-millimeter-wave 5G applications. Alexandria Engineering Journal, 61(9), 6645–6658. https://doi.org/10.1016/j.aej.2021.12.015
El-Nady, S. M., & Attiya, A. M. (2022). Periodically-stub-loaded microstrip line wideband circularly polarized millimeter wave MIMO antenna. IEEE Access, 10, 20465–20472. https://doi.org/10.1109/ACCESS.2022.3152222
Hussain, M., Rafique, U., Dalal, P., Abbas, S.M., & Zhu, Y. (2024). A compact and wide band antenna for millimeter wave applications. In: 2024 IEEE Wireless antenna and microwave symposium (WAMS), pp. 1–4. https://doi.org/10.1109/WAMS59642.2024.10527956. IEEE
Sharma, D., Katiyar, R., Dwivedi, A. K., Nagesh, K. N., Sharma, A., & Ranjan, P. (2023). Dielectric resonator-based two-port filtennas with pattern and space diversity for 5G IoT applications. International Journal of Microwave and Wireless Technologies, 15(2), 263–270. https://doi.org/10.1017/S1759078722000150
Kumar, A., Dwivedi, A. K., Nagesh, K., Sharma, A., & Ranjan, P. (2022). Circularly polarised dielectric resonator based two port filtenna for millimeter-wave 5G communication system. IETE Technical Review, 39(6), 1501–1511. https://doi.org/10.1080/02564602.2022.2028588
Munir, M. E., Nasralla, M. M., & Esmail, M. A. (2024). Four port tri-circular ring MIMO antenna with wide-band characteristics for future 5G and mmWave applications. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e28714
Din, I. U., Ullah, S., Mufti, N., Ullah, R., Kamal, B., & Ullah, R. (2023). Metamaterial-based highly isolated MIMO antenna system for 5G smartphone application. International Journal of Communication Systems, 36(3), 5392. https://doi.org/10.1002/dac.5392
Hussain, M., Abbas, Q., Gardzi, S.H.H., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2022). Ultra-wideband mimo antenna realization for indoor ka-band applications. In: 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, pp. 108–109. https://doi.org/10.23919/USNC-URSINRSM57467.2022.9881413
Hussain, M., Mousa Ali, E., Jarchavi, S. M. R., Zaidi, A., Najam, A. I., Alotaibi, A. A., Althobaiti, A., & Ghoneim, S. S. (2022). Design and characterization of compact broadband antenna and its mimo configuration for 28 ghz 5G applications. Electronics, 11(4), 523. https://doi.org/10.3390/electronics11040523
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
All authors contribute equally to the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sellak, L., Khabba, A., Chabaa, S. et al. RBFNN-Based Ultra-Wideband Super-Miniaturized \(4\times 4\) Highly-Isolated MIMO Antenna for 5G mm-Wave Wireless Communications. Wireless Pers Commun 138, 1099–1154 (2024). https://doi.org/10.1007/s11277-024-11548-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-024-11548-8