Skip to main content
Log in

RBFNN-Based Ultra-Wideband Super-Miniaturized \(4\times 4\) Highly-Isolated MIMO Antenna for 5G mm-Wave Wireless Communications

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As the demand for high-speed communication in 5G increases, this article presents a development breakthrough in millimeter-wave spectrum solutions. The focus is on designing an ultra-wideband (UWB) circular patch antenna for 5G millimeter-wave applications. To address the problem of limited bandwidth and efficiency in existing designs, a UWB antenna operating in the 20–45 GHz range with a compact form factor of \(4 \times 4.8 \times 0.508 \,\,{\hbox {mm}}^{3}\) has been developed. A radial basis function neural network (RBFNN) was employed to analyze and optimize the antenna’s bandwidth characteristics. The resulting antenna exhibits a wide bandwidth of 25 GHz, a gain of 5.75 dB, and an impressive efficiency of 99%. To extend the capabilities of the design, a \(4 \times 4\) MIMO antenna system was developed, incorporating four copies of the proposed UWB single antenna, achieving an extended bandwidth of 25 GHz. The MIMO system, with dimensions of \(17.5 \times 17.5 \times 0.508\,\,{\hbox {mm}}^{3}\), demonstrates excellent performance with isolation exceeding 30 dB, a gain of 6 dB, and high efficiency. Rigorous measurements validate the designs, affirming their practical viability for future 5G mmWave applications. In conclusion, the proposed UWB antenna and MIMO system offer significant advancements in 5G mmWave communication, providing high performance in bandwidth, gain, and efficiency, supported by comprehensive simulations and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availibility

Not Applicable.

Code Availability

Not applicable.

References

  1. Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). Smart manufacturing and tactile internet based on 5G in industry 4.0: challenges applications and new trends. Electronics, 10(24), 3175. https://doi.org/10.3390/electronics10243175

    Article  Google Scholar 

  2. Alraih, S., Shayea, I., Behjati, M., Nordin, R., Abdullah, N. F., Abu-Samah, A., & Nandi, D. (2022). Revolution or evolution? Technical requirements and considerations towards 6g mobile communications. Sensors, 22(3), 762. https://doi.org/10.3390/s22030762

    Article  Google Scholar 

  3. Khawaja, W., Ozdemir, O., Yapici, Y., Erden, F., & Guvenc, I. (2020). Coverage enhancement for NLOS mmWave links using passive reflectors. IEEE Open Journal of the Communications Society, 1, 263–281. https://doi.org/10.1109/OJCOMS.2020.2969751

    Article  Google Scholar 

  4. Hadani, R., Rakib, S., Molisch, A.F., Ibars, C., Monk, A., Tsatsanis, M., Delfeld, J., Goldsmith, A., & Calderbank, R. (2017). Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems. In: 2017 IEEE MTT-S International Microwave Symposium (IMS), pp. 681–683. IEEE, Honololu, HI, USA. https://doi.org/10.1109/MWSYM.2017.8058662. http://ieeexplore.ieee.org/document/8058662/ Accessed 2023-01-13

  5. Dejen, A., Ridwan, M., Anguera, J., & Jayasinghe, J. (2022). Millimeter wave cellular communication performances and challenges: A survey. EAI Endorsed Transactions on Mobile Communications and Applications, 7(21), 5–5. https://doi.org/10.4108/eetmca.v7i21.2424

    Article  Google Scholar 

  6. Ghosh, S., & Sen, D. (2019). An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access, 7, 83137–83161. https://doi.org/10.1109/ACCESS.2019.2924805

    Article  Google Scholar 

  7. Addali, K. M., Bani Melhem, S. Y., Khamayseh, Y., Zhang, Z., & Kadoch, M. (2019). Dynamic mobility load balancing for 5G small-cell networks based on utility functions. IEEE Access, 7, 126998–127011. https://doi.org/10.1109/ACCESS.2019.2939936

    Article  Google Scholar 

  8. Chen, Z., Zhu, G., Wang, S., Xu, Y., Xiong, J., Zhao, J., Luo, J., & Wang, X. (2019). \({{\rm M}}^{3}\): Multipath assisted wi-fi localization with a single access point. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2019.2950315

  9. Alhosani, H., Rehman, M.H.u., Salah, K., Lima, C., & Svetinovic, D. (2020). Blockchain-based solution for multiple operator spectrum sharing (moss) in 5g networks. In: 2020 IEEE Globecom Workshops (GC Wkshps, pp. 1–6. https://doi.org/10.1109/GCWkshps50303.2020.9367561

  10. Abbas, M. A., Allam, A., Gaafar, A., Elhennawy, H. M., & Sree, M. F. A. (2023). Compact UWB MIMO antenna for 5G millimeter-wave applications. Sensors, 23(5), 2702. https://doi.org/10.3390/s23052702

    Article  Google Scholar 

  11. Painam, S., Anumala, V.S., Painam, K., Tatikonda, K.C., Miriyala, S., & P.P.M., P. (2019). Triple-UWB millimeter-wave MIMO antenna with improved isolation for 5G wireless applications. In: 2019 IEEE indian conference on antennas and propogation (InCAP), pp. 1–5. https://doi.org/10.1109/InCAP47789.2019.9134678

  12. Sehrai, D. A., Asif, M., Khan, J., Abdullah, M., Shah, W. A., Alotaibi, S., & Ullah, N. (2022). A high-gain and wideband mimo antenna for 5g mm-wave-based iot communication networks. Applied Sciences. https://doi.org/10.3390/app12199530

    Article  Google Scholar 

  13. Patel, A., Vala, A., Desai, A., Elfergani, I., Mewada, H., Mahant, K., Zebiri, C., Chauhan, D., & Rodriguez, J. (2022). Inverted-L shaped wideband MIMO antenna for millimeter-wave 5G applications. Electronics, 11(9), 1387. https://doi.org/10.3390/electronics11091387

    Article  Google Scholar 

  14. Kornprobst, J., Wang, K., Hamberger, G., & Eibert, T. F. (2017). A mm-wave patch antenna with broad bandwidth and a wide angular range. IEEE Transactions on Antennas and Propagation, 65(8), 4293–4298. https://doi.org/10.1109/TAP.2017.2710261

    Article  Google Scholar 

  15. Alhawari, A.R.H., Saeidi, T., Almawgani, A.H.M., Hindi, A.T., Alghamdi, H., Alsuwian, T., Awwad, S.A.B., & Imran, M.A. (2021). Wearable Metamaterial Dual-Polarized High Isolation UWB MIMO Vivaldi Antenna for 5G and Satellite Communications. Micromachines, 12(12). https://doi.org/10.3390/mi12121559

  16. Alzidani, M., Afifi, I., Asaadi, M., & Sebak, A.-R. (2020). Ultra-Wideband Differential Fed Hybrid Antenna With High-Cross Polarization Discrimination for Millimeter Wave Applications. IEEE Access, 8, 80673–80683. https://doi.org/10.1109/ACCESS.2020.2988000

    Article  Google Scholar 

  17. Ali, M. M. M., Al-Hasan, M., Mabrouk, I. B., & Denidni, T. A. (2022). Ultra-wideband hybrid magneto-electric dielectric-resonator dipole antenna fed by a printed RGW for millimeter-wave applications. IEEE Access, 10, 2028–2036. https://doi.org/10.1109/ACCESS.2021.3139828

    Article  Google Scholar 

  18. Chen, H., Shao, Y., Zhang, Y., Zhang, C., & Zhang, Z. (2020). A millimeter-wave triple-band siw antenna with dual-sense circular polarization. IEEE Transactions on Antennas and Propagation, 68(12), 8162–8167. https://doi.org/10.1109/TAP.2020.2996806

    Article  Google Scholar 

  19. Toktas, A., & Turkmen, H. A. (2023). Ultra-wideband monopole antenna with defected ground for millimeter-wave applications. Journal of Infrared, Millimeter, and Terahertz Waves, 44(1–2), 37–51. https://doi.org/10.1007/s10762-023-00904-7

    Article  Google Scholar 

  20. Khan, M. A., Al Harbi, A. G., Kiani, S. H., Nordin, A. N., Munir, M. E., Saeed, S. I., Iqbal, J., Ali, E. M., Alibakhshikenari, M., & Dalarsson, M. (2022). mmWave Four-Element MIMO Antenna for Future 5G Systems. Applied Sciences. https://doi.org/10.3390/app12094280

    Article  Google Scholar 

  21. Tiwari, P., Kaushik, M., Shastri, A., Ranjan, P., & Gahlaut, V. (2024). A 28 GHz wideband planar stepped-shaped MIMO antenna with isolating metallic sheet for 5G millimeter wave communications. AEU - International Journal of Electronics and Communications, 184, 155411. https://doi.org/10.1016/j.aeue.2024.155411

    Article  Google Scholar 

  22. Sengar, S., Malik, P. K., Das, S., Islam, T., Singh, R., & Asha, S. (2024). A quad port mimo antenna designed with an x-shaped decoupling structure for wideband millimeter-wave (mm-wave) 5g fr2 new radio (n258/n261) bands applications. Wireless Personal Communications, 134(2), 857–880. https://doi.org/10.1007/s11277-024-10934-6

    Article  Google Scholar 

  23. Ud Din, I., Alibakhshikenari, M., Virdee, B. S., Jayanthi, R. K. R., Ullah, S., Khan, S., See, C. H., Golunski, L., & Koziel, S. (2023). Frequency-selective surface-based mimo antenna array for 5G millimeter-wave applications. Sensors, 23(15), 7009. https://doi.org/10.3390/s23157009

    Article  Google Scholar 

  24. Dey, A. B., Kumar, S., Arif, W., & Anguera, J. (2022). Elastomeric textile substrates to design a compact, low-profile AMC-based antenna for medical and IoT applications. IEEE Internet of Things Journal, 10(6), 4952–4969. https://doi.org/10.1109/JIOT.2022.3221360

    Article  Google Scholar 

  25. Dey, A. B., Pattanayak, S. S., Mitra, D., & Arif, W. (2021). Investigation and design of enhanced decoupled uwb mimo antenna for wearable applications. Microwave and Optical Technology Letters, 63(3), 845–861. https://doi.org/10.1002/mop.32699

    Article  Google Scholar 

  26. Dey, A. B., & Arif, W. (2022). Design and analysis of a cpw-fed flexible ultrawideband antenna for microwave imaging of breast cancer. International Journal of RF and Microwave Computer-Aided Engineering, 32(9), 23262. https://doi.org/10.1002/mmce.23262

    Article  Google Scholar 

  27. Dey, A. B., Bhatt, U., & Arif, W. (2021). Design of a compact wearable ultrawideband mimo antenna with improved portisolation. Turkish Journal of Electrical Engineering and Computer Sciences, 29(2), 897–912. https://doi.org/10.3906/elk-2004-132

    Article  Google Scholar 

  28. Balanis, C. A. (2015). Antenna theory: Analysis and design. Wiley.

    Google Scholar 

  29. Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design. Wiley.

    Google Scholar 

  30. Volakis, J.L., Volakis, J.L., Chatterjee, A., & Kempel, L.C. (1998). Finite Element Method for Electromagnetics. Universities Press,

  31. Sarkar, D., Khan, T., & Talukdar, F.A. (2021). Forward and Reverse Neural Network Modelling of Beveled Stepped Rectangular UWB Antennas. In: Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, pp. 103–113. Springer, Singapore. https://doi.org/10.1007/978-981-16-2709-5_9

  32. Ibnyaich, S., Wakrim, L., & Hassani, M. M. (2021). Nonuniform Semi-patches for Designing an Ultra Wideband PIFA Antenna by Using Genetic Algorithm Optimization. Wireless Personal Communications, 117(2), 957–969. https://doi.org/10.1007/s11277-020-07905-y

    Article  Google Scholar 

  33. Jamom, H.A., Abograin, A.A., & Abdalla, M.M. (2022). Design of a Vivaldi antenna using particle swarm optimization for 5G applications. In: 2022 IEEE 2nd International Maghreb meeting of the conference on sciences and techniques of automatic control and computer engineering (MI-STA), pp. 603–606. https://doi.org/10.1109/MI-STA54861.2022.9837591

  34. Lala, A., Lala, K., & Singh, V.K. (2021). Bandwidth analysis of dual-feed slotted antenna using artificial neural networks. Emerging materials and advanced designs for wearable antennas. https://doi.org/10.4018/978-1-7998-7611-3.ch006. ISBN: 9781799876113 Pages: 70-84 Publisher: IGI Global. Accessed 2023-01-23

  35. Dhanalakshmi, P., Palanivel, S., & Ramalingam, V. (2009). Classification of audio signals using SVM and RBFNN. Expert Systems with Applications, 36(3), 6069–6075.

    Article  Google Scholar 

  36. Balanis, C.A. (2016). Antenna theory: Analysis and design. Wiley

  37. Pavidha, V., & Jayakumar, A. (2023). Design and analysis of microstrip yagi uda antenna for 5g communication on fr4 substrate. In: 2023 2nd International conference on smart technologies and systems for next generation computing (ICSTSN), pp. 1–7. https://doi.org/10.1109/ICSTSN57873.2023.10151514

  38. Sharma, S., Tripathi, C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 1–16.

    Article  Google Scholar 

  39. Khabba, A., Amadid, J., Mohapatra, S., El Ouadi, Z., Ahmad, S., Ibnyaich, S., & Zeroual, A. (2022). UWB dual-port self-decoupled o-shaped monopole mimo antenna with small-size easily extendable design and high diversity performance for millimeter-wave 5g applications. Applied Physics A, 128(8), 725. https://doi.org/10.1007/s00339-022-05881-7

    Article  Google Scholar 

  40. Hussain, M., Awan, W. A., Ali, E. M., Alzaidi, M. S., Alsharef, M., Elkamchouchi, D. H., Alzahrani, A., & Fathy Abo Sree, M. (2022). Isolation improvement of parasitic element-loaded dual-band mimo antenna for mm-wave applications. Micromachines, 13(11), 1918. https://doi.org/10.3390/mi13111918

    Article  Google Scholar 

  41. Alibakhshikenari, M., Babaeian, F., Virdee, B. S., Aïssa, S., Azpilicueta, L., See, C. H., Althuwayb, A. A., Huynen, I., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2020). A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to sar and mimo antenna systems’’. IEEE Access, 8, 192965–193004. https://doi.org/10.1109/ACCESS.2020.3032826

    Article  Google Scholar 

  42. Hussain, M., Awan, W. A., Alzaidi, M. S., Hussain, N., Ali, E. M., & Falcone, F. (2023). Metamaterials and their application in the performance enhancement of reconfigurable antennas: A review. Micromachines, 14(2), 349. https://doi.org/10.3390/electronics11040523

    Article  Google Scholar 

  43. Khabba, A., Amadid, J., Ibnyaich, S., & Zeroual, A. (2022). Pretty-small four-port dual-wideband 28/38 ghz mimo antenna with robust isolation and high diversity performance for millimeter-wave 5g wireless systems. Analog Integrated Circuits and Signal Processing, 112(1), 83–102. https://doi.org/10.1007/s10470-022-02045-8

    Article  Google Scholar 

  44. Amin, F., Saleem, R., Shabbir, T., Rehman, S. U., Bilal, M., & Shafique, M. F. (2019). A compact quad-element uwb-mimo antenna system with parasitic decoupling mechanism. Applied Sciences, 9(11), 2371. https://doi.org/10.3390/app9112371

    Article  Google Scholar 

  45. Lu, Y., Huang, Y., Chattha, H. T., & Cao, P. (2011). Reducing ground-plane effects on UWB monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 147–150. https://doi.org/10.1109/LAWP.2011.2119459

    Article  Google Scholar 

  46. Khalid, M., Iffat Naqvi, S., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9(1), 71. https://doi.org/10.3390/electronics9010071

    Article  Google Scholar 

  47. Dwivedi, A. K., Sharma, A., Singh, A. K., & Singh, V. (2020). Design of dual band four port circularly polarized mimo dra for wlan/wimax applications. Journal of Electromagnetic Waves and Applications, 34(15), 1990–2009. https://doi.org/10.1080/09205071.2020.1801522

    Article  Google Scholar 

  48. Varshney, G., Gotra, S., Pandey, V., & Yaduvanshi, R. S. (2019). Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Communication Networks, 21, 100246.

    Article  Google Scholar 

  49. Khabba, A., Wakrim, L., Ibnyaich, S., & Hassani, M. M. (2022). Beam-steerable ultra-wide-band miniaturized elliptical phased array antenna using inverted-L-shaped modified inset feed and defected ground structure for 5G smartphones millimeter-wave applications. Wireless Personal Communications, 125(4), 3801–3833.

    Article  Google Scholar 

  50. Khan, A. A., Jamaluddin, M. H., Aqeel, S., Nasir, J., Kazim, J. R., & Owais, O. (2017). Dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications. IET Microwaves, Antennas & Propagation, 11(1), 113–120. https://doi.org/10.1049/iet-map.2015.0745

    Article  Google Scholar 

  51. Sellak, L., Khabba, A., Chabaa, S., Ibnyaich, S., Sarosh, A., Zeroual, A., & Baddou, A. (2023). ANFIS-Based \(4 \times 4\) Dual band circular MIMO antenna design with pretty-small size and large bandwidth for 5G millimeter-wave applications at 28/38 GHz. Journal of Infrared, Millimeter, and Terahertz Waves, 44(7), 551–601. https://doi.org/10.1007/s10762-023-00924-3

    Article  Google Scholar 

  52. Kumar, A., Ansari, A. Q., Kanaujia, B. K., & Kishor, J. (2019). A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEU-International Journal of Electronics and Communications, 104, 35–43. https://doi.org/10.1016/j.aeue.2019.03.009

    Article  Google Scholar 

  53. Rubani, Q., Gupta, S. H., & Rajawat, A. (2020). A compact MIMO antenna for WBAN operating at terahertz frequency. Optik, 207, 164447. https://doi.org/10.1016/j.ijleo.2020.164447

    Article  Google Scholar 

  54. Kumar, A., Ansari, A. Q., Kanaujia, B. K., & Kishor, J. (2019). A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEU - International Journal of Electronics and Communications, 104, 35–43. https://doi.org/10.1016/j.aeue.2019.03.009

    Article  Google Scholar 

  55. Sharawi, M. S. (2017). Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]. IEEE Antennas and Propagation Magazine, 59(2), 162–170.

    Article  Google Scholar 

  56. Kumar, A., Ansari, A. Q., Kanaujia, B. K., Kishor, J., & Matekovits, L. (2021). A review on different techniques of mutual coupling reduction between elements of any mimo antenna. part 1: Dgss and parasitic structures. Radio Science, 56(3), 1–25. https://doi.org/10.1029/2020RS007122

    Article  Google Scholar 

  57. Patel, A., Desai, A., Elfergani, I., Vala, A., Mewada, H., Mahant, K., Patel, S., Zebiri, C., Rodriguez, J., & Ali, E. (2022). UWB CPW fed 4-port connected ground MIMO antenna for sub-millimeter-wave 5G applications. Alexandria Engineering Journal, 61(9), 6645–6658. https://doi.org/10.1016/j.aej.2021.12.015

    Article  Google Scholar 

  58. El-Nady, S. M., & Attiya, A. M. (2022). Periodically-stub-loaded microstrip line wideband circularly polarized millimeter wave MIMO antenna. IEEE Access, 10, 20465–20472. https://doi.org/10.1109/ACCESS.2022.3152222

    Article  Google Scholar 

  59. Hussain, M., Rafique, U., Dalal, P., Abbas, S.M., & Zhu, Y. (2024). A compact and wide band antenna for millimeter wave applications. In: 2024 IEEE Wireless antenna and microwave symposium (WAMS), pp. 1–4. https://doi.org/10.1109/WAMS59642.2024.10527956. IEEE

  60. Sharma, D., Katiyar, R., Dwivedi, A. K., Nagesh, K. N., Sharma, A., & Ranjan, P. (2023). Dielectric resonator-based two-port filtennas with pattern and space diversity for 5G IoT applications. International Journal of Microwave and Wireless Technologies, 15(2), 263–270. https://doi.org/10.1017/S1759078722000150

    Article  Google Scholar 

  61. Kumar, A., Dwivedi, A. K., Nagesh, K., Sharma, A., & Ranjan, P. (2022). Circularly polarised dielectric resonator based two port filtenna for millimeter-wave 5G communication system. IETE Technical Review, 39(6), 1501–1511. https://doi.org/10.1080/02564602.2022.2028588

    Article  Google Scholar 

  62. Munir, M. E., Nasralla, M. M., & Esmail, M. A. (2024). Four port tri-circular ring MIMO antenna with wide-band characteristics for future 5G and mmWave applications. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e28714

    Article  Google Scholar 

  63. Din, I. U., Ullah, S., Mufti, N., Ullah, R., Kamal, B., & Ullah, R. (2023). Metamaterial-based highly isolated MIMO antenna system for 5G smartphone application. International Journal of Communication Systems, 36(3), 5392. https://doi.org/10.1002/dac.5392

    Article  Google Scholar 

  64. Hussain, M., Abbas, Q., Gardzi, S.H.H., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2022). Ultra-wideband mimo antenna realization for indoor ka-band applications. In: 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, pp. 108–109. https://doi.org/10.23919/USNC-URSINRSM57467.2022.9881413

  65. Hussain, M., Mousa Ali, E., Jarchavi, S. M. R., Zaidi, A., Najam, A. I., Alotaibi, A. A., Althobaiti, A., & Ghoneim, S. S. (2022). Design and characterization of compact broadband antenna and its mimo configuration for 28 ghz 5G applications. Electronics, 11(4), 523. https://doi.org/10.3390/electronics11040523

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to the manuscript.

Corresponding author

Correspondence to Lahcen Sellak.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellak, L., Khabba, A., Chabaa, S. et al. RBFNN-Based Ultra-Wideband Super-Miniaturized \(4\times 4\) Highly-Isolated MIMO Antenna for 5G mm-Wave Wireless Communications. Wireless Pers Commun 138, 1099–1154 (2024). https://doi.org/10.1007/s11277-024-11548-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11548-8

Keywords

Navigation