Skip to main content

Advertisement

Log in

Artificial Intelligence-based Deep Learning Architecture for Tuberculosis Detection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Artificial Intelligence-based system for Tuberculosis (TB) detection has been proposed in this work. Manual diagnostic through radiologists can be misdiagnosis due to human error. Designing an artificial intelligence-based decision support system can help in the accurate prediction of TB through lung Chest X-ray (CXR) image. In the proposed work, data centric and model centric approaches are applied. In data centric approach, images play an important role in feature extraction. In this context, experimentation on six varied kinds of image enhancement applied to the publicly available TB image dataset along with data pre-processing and data augmentation. In model centric approach, three pre-trained Convolutional Neural Network (CNN) with modification with specialized layers are proposed. Comparative Study of six image enhancement techniques along with original dataset in behavior response with network architectures is evaluated for best performance. Evaluation of the networks is based on accuracy, precision, recall and AUC. Sharpening of images applied on Modified ResNet50 is the best performer with accuracy 99.05%, precision 98.87%, recall 100% and AUC of 99.29%. In comparability with original dataset, sharpened images performed 0.8% better in metric evaluation, which gives better classification approach and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

There is no other data available.

References

  1. Koegelenberg, C. F., Schoch, O. D., & Lange, C. (2021). Tuberculosis: The past, the present and the future. Respiration, 100(7), 553–556.

    Article  Google Scholar 

  2. Stutz, M. D., Allison, C. C., Ojaimi, S., Preston, S. P., Doerflinger, M., Arandjelovic, P., Pellegrini, M. (2021). Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 54(8): 1758–1771.

  3. Chattopadhyay S, Kundu R, Singh PK, Mirjalili S, Sarkar R (2021) Pneumonia detection from lung X‐ray images using local search aided sine cosine algorithm based deep feature selection method. International Journal of Intelligent Systems.

  4. Yan, F., Li, Z., & Zhou, Z. (2022). Robust and efficient edge-based visual odometry. Computational Visual Media, 8(3), 467–481.

    Article  Google Scholar 

  5. Ren, L., & Song, Y. (2022). AOGAN: A generative adversarial network for screen space ambient occlusion. Computational Visual Media, 8(3), 48.

    Article  MathSciNet  Google Scholar 

  6. Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., ... & De Albuquerque, V. H. C. (2020). A novel transfer learning-based approach for pneumonia detection in chest X-ray images. Applied Sciences10(2), 559.

  7. Sharma, V. K., Acharya, B., Mahapatra, K. K., & Nath, V. (2020). Learning Discriminative Classifier Parameter for Visual Object Tracking by Detection. In International Conference on Nanoelectronics, Circuits and Communication Systems (pp. 355–369). Springer, Singapore.

  8. Stephen, O., Sain, M., Maduh, U. J., & Jeong, D. U. (2019). An efficient deep learning approach to pneumonia classification in healthcare. Journal of healthcare engineering2019.

  9. Nath, P., Biswas, A., & Nath, V. (2021). Performance optimization of solar cells using non-polar, semi-polar and polar InGaN/GaN multiple quantum wells alongside AlGaN blocking layers. Microsystem Technologies, 27(1), 301–306.

    Article  Google Scholar 

  10. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps 2: 323–350.

  11. Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, 114054.

    Article  Google Scholar 

  12. Lopez-Garnier, S., Sheen, P., & Zimic, M. (2019). Automatic diagnostics of tuberculosis using convolutional neural networks analysis of MODS digital images. PLoS ONE, 14(2), e0212094.

    Article  Google Scholar 

  13. Jeyaraj, P. R., & Samuel Nadar, E. R. (2019). Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. Journal of Cancer Research and Clinical Oncology, 145(4), 829–837.

    Article  Google Scholar 

  14. Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4), 582–596.

    Article  Google Scholar 

  15. Scholl, I., Aach, T., Deserno, T. M., & Kuhlen, T. (2011). Challenges of medical image processing. Computer Science-Research and Development, 26(1), 5–13.

    Article  Google Scholar 

  16. Hussain, M., Bird, J. J., & Faria, D. R. (2018, September). A study on cnn transfer learning for image classification. In UK Workshop on computational Intelligence (pp. 191–202). Springer, Cham.

  17. Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., ... & Hu, S. M. (2022). Attention mechanisms in computer vision: A survey. Computational Visual Media, 1–38.

  18. Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik, 29(2), 86–101.

    Article  Google Scholar 

  19. Arun, R., Nair, M. S., Vrinthavani, R., & Tatavarti, R. (2011). An alpha rooting-based hybrid technique for image enhancement. Image9(10), 1–10.

  20. Hasikin, K., & Isa, N. A. M. (2012, March). Enhancement of the low contrast image using fuzzy set theory. In 2012 UKSim 14th International Conference on Computer Modelling and Simulation (pp. 371–376). IEEE.

  21. Selvi, M., & George, A. (2013, July). FBFET: Fuzzy based fingerprint enhancement technique based on adaptive thresholding. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1–5). IEEE.

  22. Khan, M. F., Khan, E., & Abbasi, Z. A. (2014). Segment dependent dynamic multi-histogram equalization for image contrast enhancement. Digital Signal Processing, 25, 198–223.

    Article  Google Scholar 

  23. Oh, Y., Park, S., & Ye, J. C. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging, 39(8), 2688–2700.

    Article  Google Scholar 

  24. Tahir, A. M., Qiblawey, Y., Khandakar, A., Rahman, T., Khurshid, U., Musharavati, F., & Chowdhury, M. E. (2022). Deep learning for reliable classification of COVID-19, MERS, and SARS from chest X-ray images. Cognitive Computation 5: 1–21.

  25. Vidyasaraswathi, H. N., & Hanumantharaju, M. C. (2015). Review of various histogram based medical image enhancement techniques. In Proceedings of the 2015 International Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015) (pp. 1–6).

  26. Ahmed, S., Yap, M. H., Tan, M., & Hasan, M. K. (2020). Reconet: Multi-level preprocessing of chest x-rays for covid-19 detection using convolutional neural networks. medRxiv.

  27. Khuzi, A. M., Besar, R., Zaki, W. W., & Ahmad, N. N. (2009). Identification of masses in digital mammogram using gray level co-occurrence matrices. Biomedical imaging and intervention journal5(3).

  28. Jaeger, S., Karargyris, A., Antani, S., & Thoma, G. (2012). Detecting tuberculosis in radiographs using combined lung masks. In 2012 Annual international conference of the IEEE engineering in medicine and biology society (pp. 4978–4981). IEEE.

  29. Hooda, R., Sofat, S., Kaur, S., Mittal, A., & Meriaudeau, F. (2017). Deep learning: A potential method for tuberculosis detection using chest radiography. In 2017 IEEE international conference on signal and image processing applications (ICSIPA) (pp. 497–502). IEEE.

  30. Evalgelista, L. G. C., & Guedes, E. B. (2018). Computer-aided tuberculosis detection from chest X-ray images with convolutional neural networks. In Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (pp. 518–527). SBC.

  31. Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., & Pfeiffer, D. (2019). Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Scientific Reports, 9(1), 1–9.

    Article  Google Scholar 

  32. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  Google Scholar 

  33. Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., ... & Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS medicine15(11), e1002686.

  34. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). Ieee.

  35. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  36. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).

  37. Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.

  38. Ketkar, N. (2017). Introduction to deep learning. In Deep learning with Python (pp. 1–5). Apress, Berkeley, CA.

  39. Rahman, T., Khandakar, A., Kadir, M. A., Islam, K. R., Islam, K. F., Mazhar, R., ... & Chowdhury, M. E. (2020). Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access8, 191586–191601.

  40. Patel, M., Das, A., Pant, V. K., & Jayasurya, M. (2021). Detection of Tuberculosis in Radiographs using Deep Learning-based Ensemble Methods. In 2021 Smart Technologies, Communication and Robotics (STCR) (pp. 1–7). IEEE.

  41. Rajaraman, S., & Antani, S. K. (2020). Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs. IEEE Access, 8, 27318–27326.

    Article  Google Scholar 

  42. Oloko-Oba, M., & Viriri, S. (2022). A Systematic Review of Deep Learning Techniques for Tuberculosis Detection from Chest Radiograph. Frontiers in Medicine9.

  43. Dian, R., Li, S., Guo, A., & Fang, L. (2018). Deep hyperspectral image sharpening. IEEE Transactions on Neural Networks and Learning Systems, 29(11), 5345–5355.

    Article  MathSciNet  Google Scholar 

  44. Yan, C., Wang, L., Lin, J., et al. (2022). A fully automatic artificial intelligence–based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. European Radiology, 32, 2188–2199. https://doi.org/10.1007/s00330-021-08365-z

    Article  Google Scholar 

  45. Singh, M., Pujar, G. V., Kumar, S. A., Bhagyalalitha, M., Akshatha, H. S., Abuhaija, B., Alsoud, A. R., Abualigah, L., Beeraka, N. M., & Gandomi, A. H. (2022). Evolution of machine learning in tuberculosis diagnosis: A review of deep learning-based medical applications. Electronics, 11, 2634. https://doi.org/10.3390/electronics11172634

    Article  Google Scholar 

  46. Mishra, M., Barman, T., & Ramana, G. V. (2024). Artificial intelligence-based visual inspection system for structural health monitoring of cultural heritage. Journal of Civil Structural Health Monitoring, 14(1), 103–120. https://doi.org/10.1007/s13349-022-00643-8

    Article  Google Scholar 

  47. Zhang, J., & Chen, T. (2024). Artificial intelligence based social robots in the process of student mental health diagnosis. Entertainment Computing, 100799.https://doi.org/10.1016/j.entcom.2024.100799

  48. López-Blanco, R., Alonso, R. S., Rodríguez-González, S., Prieto, J., & Corchado, J. M. (2024). Trustworthy Artificial Intelligence Artificial Intelligence -based federated architecture for symptomatic disease detection. Neurocomputing, 579, 127415. https://doi.org/10.1016/j.neucom.2024.127415

    Article  Google Scholar 

  49. Patro, K. A. K., Acharya, B., & Nath, V. (2019). Secure, lossless, and noise-resistive image encryption using Chaos, Hyper-chaos, and DNA sequence operation. IETE Technical Review, 37(3), 223–245. https://doi.org/10.1080/02564602.2019.1595751

    Article  Google Scholar 

  50. Huy, V. T. Q., & Lin, C. M. (2023). An improved densenet deep neural network model for tuberculosis detection using chest x-ray images. IEEE Access, 11, 42839–42849. https://doi.org/10.1109/ACCESS.2023.3270774

    Article  Google Scholar 

  51. Malik, H., Anees, T., Chaudhry, M. U., Gono, R., Jasiński, M., Leonowicz, Z., & Bernat, P. (2023). A novel fusion model of hand-crafted features with deep convolutional neural networks for classification of several chest diseases using X-ray images. IEEE Access, 11, 39243–39268. https://doi.org/10.1109/ACCESS.2023.3267492

    Article  Google Scholar 

  52. Acharya, V., Choi, D., Yener, B., & Beamer, G. (2024). Prediction of tuberculosis from lung tissue images of diversity outbred mice using jump knowledge based cell graph neural network. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3359989

    Article  Google Scholar 

  53. Yadav, P., Menon, N., Ravi, V., & Vishvanathan, S. (2021). Lung-GANs: Unsupervised representation learning for lung disease classification using chest CT and X-ray images. IEEE Transactions on Engineering Management, 70(8), 2774–2786. https://doi.org/10.1109/TEM.2021.3103334

    Article  Google Scholar 

  54. Uçar, M. (2023). Deep neural network model with Bayesian optimization for tuberculosis detection from X-Ray images. Multimedia Tools and Applications, 82(24), 36951–36972. https://doi.org/10.1007/s11042-023-15212-4

    Article  Google Scholar 

  55. Wang, C. H., Chang, W., Lee, M. R., et al. (2024). Deep learning–based diagnosis of pulmonary tuberculosis on chest X-ray in the emergency department: A retrospective study. Journal of Imaging Informatics in Medicine, 37, 589–600. https://doi.org/10.1007/s10278-023-00952-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Srivastava, S. & Nath, V. Artificial Intelligence-based Deep Learning Architecture for Tuberculosis Detection. Wireless Pers Commun 138, 1937–1953 (2024). https://doi.org/10.1007/s11277-024-11587-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11587-1

Keywords