Skip to main content

Advertisement

Log in

Joint Beamforming Design of Physical Layer Security Transmission for IRS Assisted V2V Communication

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the rapid development of Internet of Vehicles (IoV) technology, the data security transmission between vehicles has become particularly important. As a novel technology that can assist wireless communication, intelligent reflecting surface (IRS) can not only change the wireless signal propagation environment, but also has the advantages of easy deployment, low cost and low consumption. In this paper, an IRS is used to assist the physical layer security communication of vehicle to vehicle (V2V) in a multiple input single output (MISO) IoV system. The physical layer security rate maximization problem of V2V link is formulated while satisfying the total power constraint and the IRS phase-shift mode constraint. An alternating optimization algorithm based on the generalized Rayleigh entropy and semidefinite relaxation (SDR) is proposed. Simulation results show that IRS-assisted V2V communication can effectively enhance the physical layer security transmission rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The corresponding author may provide the data and material used in the manuscript subjected to reasonable request.

References

  1. Zhang, H., & Lu, X. (2020). Vehicle communication network in intelligent transportation system based on Internet of Things. Computer Communications. https://doi.org/10.1016/j.comcom.2020.03.041

    Article  Google Scholar 

  2. Sheng, Z., Pressas, A., Ocheri, V., Ali, F., Rudd, R., & Nekovee, M. (2018). Intelligent 5G vehicular networks: An integration of DSRC and mmWave communications. In 2018 international conference on information and communication technology convergence (ICTC) (pp. 571-576). IEEE. https://doi.org/10.1109/ICTC.2018.8539687

  3. Chen, Y., Wang, Y., Zhang, J., et al. (2020). Resource allocation for intelligent reflecting surface aided vehicular communications. IEEE Transactions on Vehicular Technology, 69(10), 12321–12326. https://doi.org/10.1109/TVT.2020.3010252

    Article  Google Scholar 

  4. Ahmad Khan, A., Uthansakul, P., Duangmanee, P., et al. (2018). Energy efficient design of massive MIMO by considering the effects of nonlinear amplifiers. Energies, 11(5), 1045. https://doi.org/10.3390/en11051045

    Article  Google Scholar 

  5. Khan, A. A., Uthansakul, P., & Uthansakul, M. (2017). Energy efficient design of massive MIMO by incorporating with mutual coupling. International Journal on Communication Antenna and Propagation, 7(3), 198–207.

    Google Scholar 

  6. Uthansakul, P., & Khan, A. A. (2019). Enhancing the energy efficiency of mmWave massive MIMO by modifying the RF circuit configuration. Energies, 12(22), 4356. https://doi.org/10.3390/en12224356

    Article  Google Scholar 

  7. Uthansakul, P., Ahmad Khan, A., Uthansakul, M., et al. (2018). Energy efficient design of massive MIMO based on closely spaced antennas: Mutual coupling effect. Energies, 11(8), 2029. https://doi.org/10.3390/en11082029

    Article  Google Scholar 

  8. Basar, E., Di Renzo, M., De Rosny, J., et al. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773. https://doi.org/10.1109/ACCESS.2019.2935192

    Article  Google Scholar 

  9. Dong, L., Wang, H. M., & Xiao, H. T. (2021). Secure cognitive radio communication via intelligent reflecting surface. IEEE Transactions on Communications, 69(7), 4678–4690. https://doi.org/10.1109/TCOMM.2021.3073028

    Article  Google Scholar 

  10. Zamanian, S. F., Razavizadeh, S. M., & Wu, Q. (2021). Vertical beamforming in intelligent reflecting surface-aided cognitive radio networks. IEEE Wireless Communications Letters, 10(9), 1919–1923. https://doi.org/10.1109/LWC.2021.3086309

    Article  Google Scholar 

  11. Wu, Q., & Zhang, R. (2019). Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Transactions on Wireless Communications, 18(11), 5394–5409. https://doi.org/10.1109/TWC.2019.2936025

    Article  Google Scholar 

  12. Wu, Q., & Zhang, R. (2019). Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Transactions on Communications, 68(3), 1838–1851. https://doi.org/10.1109/TCOMM.2019.2958916

    Article  Google Scholar 

  13. Gao, Y., Wu, Q., Zhang, G., et al. (2022). Beamforming optimization for active intelligent reflecting surface-aided SWIPT. IEEE Transactions on Wireless Communications, 22(1), 362–378. https://doi.org/10.1109/TWC.2022.3193845

    Article  Google Scholar 

  14. Cui, M., Zhang, G., & Zhang, R. (2019). Secure wireless communication via intelligent reflecting surface. IEEE Wireless Communication Letters, 8(5), 1410–1414. https://doi.org/10.1109/LWC.2019.2919685

    Article  Google Scholar 

  15. Guan, X. R., Wu, Q. Q., & Zhang, R. (2020). Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not? IEEE Wireless Communications Letters, 9(6), 778–782. https://doi.org/10.1109/LWC.2020.2969629

    Article  Google Scholar 

  16. Hong, S., Pan, C., Ren, H., et al. (2020). Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface. IEEE Transactions on Communications, 68(12), 7851–7866. https://doi.org/10.1109/TCOMM.2020.3024621

    Article  Google Scholar 

  17. Li, J., Zhang, L., Xue, K., et al. (2021). Secure transmission by leveraging multiple intelligent reflecting surfaces in MISO systems. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TCOMM.2020.3024621

    Article  Google Scholar 

  18. Yuan, J., Liang, Y. C., Joung, J., et al. (2020). Intelligent reflecting surface-assisted cognitive radio system. IEEE Transactions on Communications, 69(1), 675–687. https://doi.org/10.1109/TCOMM.2020.3033006

    Article  Google Scholar 

  19. Wang, J., Zhang, W., Bao, X., Song, T., & Pan, C. (2020). Outage analysis for intelligent reflecting surface assisted vehicular communication networks. In GLOBECOM 2020-2020 IEEE Global Communications Conference (pp. 1-6). IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9322158

  20. Shabir, M. W., Nguyen, T. N., Mirza, J., et al. (2022). Transmit and reflect beamforming for max-min SINR in IRS-aided MIMO vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1099–1105. https://doi.org/10.1109/TITS.2022.3151135

    Article  Google Scholar 

  21. Chu, Z., Hao, W. M., Pei, X., et al. (2019). Intelligent reflecting surface aided multi-antenna secure transmission. IEEE Wireless Communications Letters, 9(1), 108–112. https://doi.org/10.1109/LWC.2019.2943559

    Article  Google Scholar 

  22. Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In 2007 IEEE International Symposium on Information Theory (pp. 2466-2470). IEEE. https://doi.org/10.1109/ISIT.2007.4557589

  23. Yu, X., Xu, D., & Schober, R. (2019). Enabling secure wireless communications via intelligent reflecting surfaces. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.https://doi.org/10.1109/GLOBECOM38437.2019.9014322

  24. Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863. https://doi.org/10.1109/TSP.2014.2303422

    Article  MathSciNet  Google Scholar 

  25. Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371. https://doi.org/10.1109/TIT.2003.817437

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Liang, Y. C., Pei, Y., & Guo, H. (2019). Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access, 7, 82599–82612. https://doi.org/10.1109/ACCESS.2019.2924034

    Article  Google Scholar 

  27. Dong, L., Wang, H. M., & Bai, J. (2021). Active reconfigurable intelligent surface aided secure transmission. IEEE Transactions on Vehicular Technology, 71(2), 2181–2186. https://doi.org/10.1109/TVT.2021.3135498

    Article  Google Scholar 

  28. Wang, R. Y., Wang, K., Cui, Y. P., et al. (2024). Phase shifts design and channel alignment strategy for IRS-aided vehicular networks. Systems Engineering and Electronics, 46(02), 761–769. https://doi.org/10.12305/j.issn.1001-506X.2024.02.40

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No.61901196, 61701202), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2021D14), Future Network Scientific Research Fund Project (No.FNSRFP-2021-YB-35), Changzhou Sci&Tech Program (No.CJ20210070), Changzhou Key Laboratory of 5G+ Indus-trial Internet Fusion Application (No.CM2023015)

Funding

Funding source of this work is supported by National Natural Science Foundation of China (Nos. 61901196, 61701202, 62341119), National Science Foundation of Jiangsu Province for Youth (No. BK20210941), Changzhou Leading Innovative Talent Introduction and Cultivation Project (No. CQ20210094), Changzhou Key Laboratory of 5G + Indus-trial Internet Fusion Application (No.CM2023015), the “Blue Project” of Universities in Jiangsu Province, and Zhongwu Youth Innovative Talents Support Program in Jiangsu Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Huihui Cui and Lei Zhang wrote the main manuscript text, Yu Wang and Lin Zhang performed the simulation analysis, Ziyan Jia did the grammar check. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Detailed derivation of Eqs. 11 and 12 are as follows:

\(\begin{gathered} |({\mathbf{h}}_{{{\text{TR}}}} + {\mathbf{f}}_{{{\text{IR}}}} {\mathbf{\Phi G}}){\mathbf{w}}|^{2} = |({\mathbf{h}}_{{{\text{TR}}}} + {\mathbf{p}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{G}}){\mathbf{w}}|^{2} \hfill \\ = ({\mathbf{h}}_{{{\text{TR}}}}^{*} + {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} ){\mathbf{w}}^{*} {\mathbf{w}}^{T} ({\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}}) \hfill \\ = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}} + \hfill \\ \, {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}} \hfill \\ = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + [{\mathbf{p}}^{H} ,1]\left[ {\begin{array}{*{20}c} {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} } \\ {{\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\mathbf{p}} \\ 1 \\ \end{array} } \right] \hfill \\ = h_{{\text{R}}} + {\mathbf{z}}^{H} {\mathbf{G}}_{{\text{R}}} {\mathbf{z}} \hfill \\ \end{gathered}\) where.

\(h_{{\text{R}}} = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T}\), \({\mathbf{z}} = [{\mathbf{p}}^{T} ,1]^{T}\), \({\mathbf{z}}^{H} = [{\mathbf{p}}^{H} ,1]\),

$${\mathbf{G}}_{{\text{R}}} = \left[ {\begin{array}{*{20}c} {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} } \\ {{\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & 0 \\ \end{array} } \right]$$

Similarly, formula (12) can be derived as the \(|({\mathbf{h}}_{{{\text{TE}}}} + {\mathbf{f}}_{{{\text{IE}}}} {\mathbf{\Phi G}}){\mathbf{w}}|^{2} = h_{{\text{E}}} + {\mathbf{z}}^{H} {\mathbf{G}}_{{\text{E}}} {\mathbf{z}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhang, L., Wang, Y. et al. Joint Beamforming Design of Physical Layer Security Transmission for IRS Assisted V2V Communication. Wireless Pers Commun 139, 967–984 (2024). https://doi.org/10.1007/s11277-024-11649-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11649-4

Keywords