Abstract
With the rapid development of Internet of Vehicles (IoV) technology, the data security transmission between vehicles has become particularly important. As a novel technology that can assist wireless communication, intelligent reflecting surface (IRS) can not only change the wireless signal propagation environment, but also has the advantages of easy deployment, low cost and low consumption. In this paper, an IRS is used to assist the physical layer security communication of vehicle to vehicle (V2V) in a multiple input single output (MISO) IoV system. The physical layer security rate maximization problem of V2V link is formulated while satisfying the total power constraint and the IRS phase-shift mode constraint. An alternating optimization algorithm based on the generalized Rayleigh entropy and semidefinite relaxation (SDR) is proposed. Simulation results show that IRS-assisted V2V communication can effectively enhance the physical layer security transmission rate.








Similar content being viewed by others
Data Availability
The corresponding author may provide the data and material used in the manuscript subjected to reasonable request.
References
Zhang, H., & Lu, X. (2020). Vehicle communication network in intelligent transportation system based on Internet of Things. Computer Communications. https://doi.org/10.1016/j.comcom.2020.03.041
Sheng, Z., Pressas, A., Ocheri, V., Ali, F., Rudd, R., & Nekovee, M. (2018). Intelligent 5G vehicular networks: An integration of DSRC and mmWave communications. In 2018 international conference on information and communication technology convergence (ICTC) (pp. 571-576). IEEE. https://doi.org/10.1109/ICTC.2018.8539687
Chen, Y., Wang, Y., Zhang, J., et al. (2020). Resource allocation for intelligent reflecting surface aided vehicular communications. IEEE Transactions on Vehicular Technology, 69(10), 12321–12326. https://doi.org/10.1109/TVT.2020.3010252
Ahmad Khan, A., Uthansakul, P., Duangmanee, P., et al. (2018). Energy efficient design of massive MIMO by considering the effects of nonlinear amplifiers. Energies, 11(5), 1045. https://doi.org/10.3390/en11051045
Khan, A. A., Uthansakul, P., & Uthansakul, M. (2017). Energy efficient design of massive MIMO by incorporating with mutual coupling. International Journal on Communication Antenna and Propagation, 7(3), 198–207.
Uthansakul, P., & Khan, A. A. (2019). Enhancing the energy efficiency of mmWave massive MIMO by modifying the RF circuit configuration. Energies, 12(22), 4356. https://doi.org/10.3390/en12224356
Uthansakul, P., Ahmad Khan, A., Uthansakul, M., et al. (2018). Energy efficient design of massive MIMO based on closely spaced antennas: Mutual coupling effect. Energies, 11(8), 2029. https://doi.org/10.3390/en11082029
Basar, E., Di Renzo, M., De Rosny, J., et al. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773. https://doi.org/10.1109/ACCESS.2019.2935192
Dong, L., Wang, H. M., & Xiao, H. T. (2021). Secure cognitive radio communication via intelligent reflecting surface. IEEE Transactions on Communications, 69(7), 4678–4690. https://doi.org/10.1109/TCOMM.2021.3073028
Zamanian, S. F., Razavizadeh, S. M., & Wu, Q. (2021). Vertical beamforming in intelligent reflecting surface-aided cognitive radio networks. IEEE Wireless Communications Letters, 10(9), 1919–1923. https://doi.org/10.1109/LWC.2021.3086309
Wu, Q., & Zhang, R. (2019). Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Transactions on Wireless Communications, 18(11), 5394–5409. https://doi.org/10.1109/TWC.2019.2936025
Wu, Q., & Zhang, R. (2019). Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Transactions on Communications, 68(3), 1838–1851. https://doi.org/10.1109/TCOMM.2019.2958916
Gao, Y., Wu, Q., Zhang, G., et al. (2022). Beamforming optimization for active intelligent reflecting surface-aided SWIPT. IEEE Transactions on Wireless Communications, 22(1), 362–378. https://doi.org/10.1109/TWC.2022.3193845
Cui, M., Zhang, G., & Zhang, R. (2019). Secure wireless communication via intelligent reflecting surface. IEEE Wireless Communication Letters, 8(5), 1410–1414. https://doi.org/10.1109/LWC.2019.2919685
Guan, X. R., Wu, Q. Q., & Zhang, R. (2020). Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not? IEEE Wireless Communications Letters, 9(6), 778–782. https://doi.org/10.1109/LWC.2020.2969629
Hong, S., Pan, C., Ren, H., et al. (2020). Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface. IEEE Transactions on Communications, 68(12), 7851–7866. https://doi.org/10.1109/TCOMM.2020.3024621
Li, J., Zhang, L., Xue, K., et al. (2021). Secure transmission by leveraging multiple intelligent reflecting surfaces in MISO systems. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TCOMM.2020.3024621
Yuan, J., Liang, Y. C., Joung, J., et al. (2020). Intelligent reflecting surface-assisted cognitive radio system. IEEE Transactions on Communications, 69(1), 675–687. https://doi.org/10.1109/TCOMM.2020.3033006
Wang, J., Zhang, W., Bao, X., Song, T., & Pan, C. (2020). Outage analysis for intelligent reflecting surface assisted vehicular communication networks. In GLOBECOM 2020-2020 IEEE Global Communications Conference (pp. 1-6). IEEE. https://doi.org/10.1109/GLOBECOM42002.2020.9322158
Shabir, M. W., Nguyen, T. N., Mirza, J., et al. (2022). Transmit and reflect beamforming for max-min SINR in IRS-aided MIMO vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1099–1105. https://doi.org/10.1109/TITS.2022.3151135
Chu, Z., Hao, W. M., Pei, X., et al. (2019). Intelligent reflecting surface aided multi-antenna secure transmission. IEEE Wireless Communications Letters, 9(1), 108–112. https://doi.org/10.1109/LWC.2019.2943559
Shafiee, S., & Ulukus, S. (2007). Achievable rates in Gaussian MISO channels with secrecy constraints. In 2007 IEEE International Symposium on Information Theory (pp. 2466-2470). IEEE. https://doi.org/10.1109/ISIT.2007.4557589
Yu, X., Xu, D., & Schober, R. (2019). Enabling secure wireless communications via intelligent reflecting surfaces. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.https://doi.org/10.1109/GLOBECOM38437.2019.9014322
Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863. https://doi.org/10.1109/TSP.2014.2303422
Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371. https://doi.org/10.1109/TIT.2003.817437
Chen, J., Liang, Y. C., Pei, Y., & Guo, H. (2019). Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access, 7, 82599–82612. https://doi.org/10.1109/ACCESS.2019.2924034
Dong, L., Wang, H. M., & Bai, J. (2021). Active reconfigurable intelligent surface aided secure transmission. IEEE Transactions on Vehicular Technology, 71(2), 2181–2186. https://doi.org/10.1109/TVT.2021.3135498
Wang, R. Y., Wang, K., Cui, Y. P., et al. (2024). Phase shifts design and channel alignment strategy for IRS-aided vehicular networks. Systems Engineering and Electronics, 46(02), 761–769. https://doi.org/10.12305/j.issn.1001-506X.2024.02.40
Acknowledgements
This work is supported by National Natural Science Foundation of China (No.61901196, 61701202), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2021D14), Future Network Scientific Research Fund Project (No.FNSRFP-2021-YB-35), Changzhou Sci&Tech Program (No.CJ20210070), Changzhou Key Laboratory of 5G+ Indus-trial Internet Fusion Application (No.CM2023015)
Funding
Funding source of this work is supported by National Natural Science Foundation of China (Nos. 61901196, 61701202, 62341119), National Science Foundation of Jiangsu Province for Youth (No. BK20210941), Changzhou Leading Innovative Talent Introduction and Cultivation Project (No. CQ20210094), Changzhou Key Laboratory of 5G + Indus-trial Internet Fusion Application (No.CM2023015), the “Blue Project” of Universities in Jiangsu Province, and Zhongwu Youth Innovative Talents Support Program in Jiangsu Institute of Technology.
Author information
Authors and Affiliations
Contributions
Huihui Cui and Lei Zhang wrote the main manuscript text, Yu Wang and Lin Zhang performed the simulation analysis, Ziyan Jia did the grammar check. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any competing interests.
Ethical Approval
The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Detailed derivation of Eqs. 11 and 12 are as follows:
\(\begin{gathered} |({\mathbf{h}}_{{{\text{TR}}}} + {\mathbf{f}}_{{{\text{IR}}}} {\mathbf{\Phi G}}){\mathbf{w}}|^{2} = |({\mathbf{h}}_{{{\text{TR}}}} + {\mathbf{p}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{G}}){\mathbf{w}}|^{2} \hfill \\ = ({\mathbf{h}}_{{{\text{TR}}}}^{*} + {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} ){\mathbf{w}}^{*} {\mathbf{w}}^{T} ({\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}}) \hfill \\ = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}} + \hfill \\ \, {\mathbf{p}}^{H} diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} ){\mathbf{p}} \hfill \\ = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} + [{\mathbf{p}}^{H} ,1]\left[ {\begin{array}{*{20}c} {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & {diag({\mathbf{f}}_{{{\text{IR}}}}^{*} ){\mathbf{G}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T} } \\ {{\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{G}}^{T} diag({\mathbf{f}}_{{{\text{IR}}}} )} & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\mathbf{p}} \\ 1 \\ \end{array} } \right] \hfill \\ = h_{{\text{R}}} + {\mathbf{z}}^{H} {\mathbf{G}}_{{\text{R}}} {\mathbf{z}} \hfill \\ \end{gathered}\) where.
\(h_{{\text{R}}} = {\mathbf{h}}_{{{\text{TR}}}}^{*} {\mathbf{w}}^{*} {\mathbf{w}}^{T} {\mathbf{h}}_{{{\text{TR}}}}^{T}\), \({\mathbf{z}} = [{\mathbf{p}}^{T} ,1]^{T}\), \({\mathbf{z}}^{H} = [{\mathbf{p}}^{H} ,1]\),
Similarly, formula (12) can be derived as the \(|({\mathbf{h}}_{{{\text{TE}}}} + {\mathbf{f}}_{{{\text{IE}}}} {\mathbf{\Phi G}}){\mathbf{w}}|^{2} = h_{{\text{E}}} + {\mathbf{z}}^{H} {\mathbf{G}}_{{\text{E}}} {\mathbf{z}}\).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cui, H., Zhang, L., Wang, Y. et al. Joint Beamforming Design of Physical Layer Security Transmission for IRS Assisted V2V Communication. Wireless Pers Commun 139, 967–984 (2024). https://doi.org/10.1007/s11277-024-11649-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-024-11649-4