Skip to main content
Log in

A user centric service-oriented modeling approach

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

With rapid development of service-oriented architecture and cloud computing, web services have been widely employed on the Internet. Quality of Service (QoS) is a very important criterion for service consumers to measure and select services. The selection of web services with respect to non-functional QoS criteria can be considered as a Multiple Criteria Decision Making (MCDM) problem when multiple consumers need to share a number of services. This paper describes a new user centric service-oriented modeling approach which is featured by integrating fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Service Component Architecture (SCA) to facilitate web service selection and composition and to effectively satisfy a group of service consumers’ subjective requirements and preferences in the dynamic environment. The main contribution of this method is able to translate a group of users’ fuzzy requirements to services as well as model different levels of hardware and software as services to meet the requirements. We also design a simulated environment that includes 8*8 LED matrix on a circuit board that corresponds to an office with different appliances to demonstrate the dynamic service selection and binding. The simulation is used to assess the computational efficiency of the fuzzy TOPSIS method and the effectiveness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Sinna, M.A., Amer, A.H., Ibrahim, A.S.: Extensions of TOPSIS for large scale multi-objective non-linear programming problems with block angular structure. Appl. Math. Model. 32, 292–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anton, N., Sergiy, N., Vagan, T., Jari, V.: Using UDDI for publishing metadata of the semantic web. J. Syst. Softw. 81(3), 368–38 (2008)

    Article  Google Scholar 

  3. Asuman, D., Ibrahim, C., Gokce, L., Yildiray, K.: Improving the functionality of UDDI registries through web service semantics. Lect. Notes Comput. Sci. 2444, 9–18 (2002)

    Google Scholar 

  4. Bauer, B., Muller, J.P.: MDA applied: From sequence diagrams to web service choreography. In ICWE’04 (LNCS 3140), pp. 132–136, (2004)

  5. Bellwood, T.: IBM. Luc Clement, Microsoft, Claw von Riegen, SAP, UDDI Version 3.0.2, UDDI Spec Technical Committee Specifcation, Oct 19, (2004)

  6. Belouadha, F.Z., Omrana, H., Roudiès O.: A model-driven approach for composing SAWSDL semantic Web services. Int. J. Comput. Sci. Issues 7(2), No 1 (2010).

    Google Scholar 

  7. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible semantic-based service matchmaking and discovery. World Wide Web 11(2), 227–251 (2008)

    Article  Google Scholar 

  8. Bordogna, G., Fedrizzi, M., Pasi, G.: A linguistic modeling of consensus in group decision-making based on OWA operators. IEEE Trans. Syst. Man Cybern., A: Syst. Humans 27, 126–132 (1997)

    Article  Google Scholar 

  9. Bryson, N.: Group decision-making and the analytic hierarchy process: exploring the consensus-relevant information content. Comput. Oper. Res. 23, 27–35 (1996)

    Article  MATH  Google Scholar 

  10. Carlsson, C., Ehrenburg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Lindholm, P., Merkuryeva, G., Riissanen, T., Ventre, A.G.S.: Consensus in distributed soft environments. Eur. J. Oper. Res. 61, 165–185 (1992)

    Article  Google Scholar 

  11. Casati, F., Ilnicki, S., Jin L.: Adaptive and dynamic service composition in EFlow. In Proceedings of 12th International Conference on Advanced Information Systems Engineering(CAiSE). Springer Verlag, Stockholm, Sweden, June (2000)

  12. Casati, F., Sayal, M., Shan, M.C.: Developing e-services for composing eservices. In Proceedings of 13th International Conference on Advanced Information Systems Engineering(CAiSE). Springer Verlag, Interlaken, Switzerland, June (2001)

  13. Chamodrakas, I., Alexopoulou, N., Martakos, D.: Customer evaluation for order acceptance using a novel class of fuzzy methods based on TOPSIS. Expert Syst. Appl. 36, 7409–7415 (2009)

    Article  Google Scholar 

  14. Chen, T.C., Tsao, C.Y.: The interval-valued fuzzy TOPSIS method and experimental analysis. Fuzzy Sets Syst. 159(11), 1410–1428 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Nguyen, S.T., Coops, R., Bambang Oetomo, S., Feijs, L.M.G.: Wireless transmission design for health monitoring at neonatal intensive care units, submitted to the 2nd international symposium on applied sciences in biomedical and communication technologies (ISABEL 2009), Bratislava, Slovak Republic, Nov. (2009)

  16. Chou, C.C.: The canonical representation of multiplication operation on triangular fuzzy numbers. Comput. Math. Appl. 45, 1601–1610 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chu, T.C., Lin, Y.C.: An interval arithmetic based fuzzy TOPSIS model. Expert Syst. Appl. 36, 10870–10876 (2009)

    Article  Google Scholar 

  18. Chu, Q., Shen, Y., Jiang Z., A Transaction Middleware Model for SCA Programming, First International Workshop on Education Technology and Computer Science, 2009.

  19. Cibrán, M.A., Verheecke, B., Vanderperren, W., Suvée, D., Jonckers, V.: Aspect-oriented programming for dynamic web service selection, integration and management. World Wide Web 10(3), 211–242 (2007)

    Article  Google Scholar 

  20. Davis, D., Parashar, M.: Latency performance of SOAP implementations. In Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 407–412, (2002)

  21. Deng, H., Yeh, C.H., Willis, R.J.: Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 27, 963–973 (2000)

    Article  MATH  Google Scholar 

  22. Efstathiadsea, A., Tassoub, S., Antoniouc, A.: Strategic planning, transfer and implementation of advanced manufacturing technologies (AMT). Technovation 22(4), 210–212 (2002)

    Google Scholar 

  23. Govindaraju, M., Slominski, A., Choppella, V., Bramley, R., Gannon, D.: Requirements for and evaluation of RMI protocols for scientific computing, ACM/IEEE conference on Supercomputing, (2000)

  24. Herrera, F., Herrera-Viedma, E., Verdegray, J.L.: A model of consensus in group decision-making under linguistic assessments. Fuzzy Sets Syst. 78, 73–87 (1996)

    Article  Google Scholar 

  25. Holleis, P.: Programming interactive physical prototypes. Proc. 1st Int’l Workshop on Design and Integration Principles for Smart Objects (DIPSO 07), (2007)

  26. Hsu, H.M., Chen, C.T.: Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 79(3), 279–285 (1996)

    Article  MathSciNet  Google Scholar 

  27. Huang, C.L., Lo, C.C., Wang, P., Chao, K.M., Li, Y.S.: Applying semi-order preference model in content-based service discovery. Int. J. E Bus. Manage. 5(1), 48–58 (2007)

    Google Scholar 

  28. Hwang, C., Yoon, K.: Multiple attribute decision making methods and application. Springer, New York (1981)

    Google Scholar 

  29. Hwang, C.L., Yoon, K.: Multiple attribute decision making: methods and applications. Spriner-verlag, New York (1981)

    MATH  Google Scholar 

  30. Jini Technology Core Platform Specification, v. 2.0, Sun Microsystems, June (2003)

  31. Kacprzyk, J., Fedrizzi, M.: Multiperson decision-making models using fuzzy sets and possibility theory. Kluwer, Dordrecht (1993)

    Google Scholar 

  32. Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Consensus under fuzziness. Kluwer, Norwell (1997)

    MATH  Google Scholar 

  33. Kahraman, C., Engin, O., Kabak, Ö., Kaya, Ï.: Information systems outsourcing decisions using a group decision-making approach. Eng. Appl. Artif. Intell. 22, 832–841 (2009)

    Article  Google Scholar 

  34. Karsak, E.E.: Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. Int. J. Prod. Res. 40(13), 3167–3181 (2002)

    Article  MATH  Google Scholar 

  35. Kauffman, A., Gupta, M.M.: Introduction of fuzzy arithmetic: Theory and applications. Van Nostrand, New York (1985)

    Google Scholar 

  36. Konito, J.: A case study in applying a systematic method for COTS selection. In: Proc., 18th Int. Conf. on Soft. Eng. (ICSE). IEEE Computer Society Press, pp. 201–209, (1996)

  37. Li, D.F.: Compromise ratio method for fuzzy multi-attribute group decision making, Applied. Soft Comput. 7(3), 807–817 (2007)

    Article  Google Scholar 

  38. Li, Y., Zou, F., Wu, Z., Ma, F.: PWSD: A scalable web service discovery architecture based on peer-to-peer overlay network. In Proc. APWeb04, LNCS 3007, pp. 291–300, (2004)

  39. Lin, H.T., Chang, W.L.: Order selection and pricing methods using flexible quantity and fuzzy approach for buyer evaluation. Eur. J. Oper. Res. 187, 415–428 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, K.J., Zhang, J., Zhai, Y., Xu, B.: The design and implementation of service process reconfiguration with end-to-end QoS constraints in SOA. Serv. Oriented Comput. Appl. 4(3), 157–168 (2010)

    Article  Google Scholar 

  41. Lo, C.C., Cheng, D.Y., Lin, P.C., Chao, K.M.: A study on representation of QoS in UDDI for web services composition: Proceedings of the 2008 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 423–428, (2008)

  42. Luo, J., Montrose, B., Kang, M.: An approach for semantic query processing with UDDI. Lect. Notes Comput. Sci. 3762, 89–98 (2005)

    Article  Google Scholar 

  43. Luo, J.Z., Zhou, J.Y., Wu, Z.A.: An adaptive algorithm for QoS-aware service composition in grid environments. Serv. Oriented Comput. Appl. 3(3), 217–226 (2010)

    Article  Google Scholar 

  44. Malik, Z., Bouguettaya, A.: Rater credibility assessment in web services interactions. World Wide Web 12(1), 3–25 (2009)

    Article  Google Scholar 

  45. Medjahed, B., Bouguettaya, A., Elmagarmid, K.: Composing web services on the Semantic Web. VLDB J. 12(4) (2003)

  46. Mich, L., Gaio L., Fedrizzi M.: On fuzzy logic-based consensus in group decision, Proceedings IFSA, pp. 698–700. (1993)

  47. Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896)

    Google Scholar 

  48. Minkowski, H.: Gesammelte Abhandlungen. Teubner, Leipzig (1911)

    Google Scholar 

  49. Montebello, M., Abela, C.: DAML enabled web services and agents in the semantic web. Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-Services and Database Systems. Lecture Note on Computer Science, pp. 46–58. (2003)

  50. Moussa, H., Gao, T., Yen, I.L., Bastani, F., Jeng, J.J.: Toward effective service composition for real-time SOA-based systems. Serv. Oriented Comput. Appl. 4(1), 17–31 (2010)

    Article  Google Scholar 

  51. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition of web service. In Proceedings of the 11th International World Wide Web Conference, Honolulu, Hawaii, USA, May (2002)

  52. OASA, a set of Final V1.0 Specifications, Open SOA (OSOA), March (2007)

  53. Ortiz, G., Hernández, J.: Aspect-oriented techniques for web services-a model-driven approach. Int. J. Bus. Process Integration Manage. 2(2), 141–152 (2007)

    Article  Google Scholar 

  54. Papazoglou, M.P., Georgakopoulos, D.: Serive-oriented computing. Communications ACM 46(10), 25–65 (2003)

    Article  Google Scholar 

  55. Ribeiro, R.A.: Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. Fuzzy Sets Syst. 78, 155–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rompothong, P., Senivongse, Tw.: A query federation of UDDI registries, ISICT, (2003)

  57. Roy, G., Jaeger, M.C.: Model-driven semantic web service composition. Proceedings of the 12th Asia-Pacific Software Engineering Conference table of contents, pp.79–86. (2005)

  58. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P infrastructure for semantic web services. Proc. 2nd Int. Conf. P2P’02, Sweden, pp. 104–111. (2002)

  59. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide Web 7(2), 211–229 (2004)

    Article  Google Scholar 

  60. Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and composing service-based and reference process-based multi-enterprise processes. In Proceeding of 12th International Conference on Advanced Information Systems Engineering (CAiSE), Stockholm, Sweden. Springer Verlag, June (2000)

  61. Service Location Protocol, v. 2, IETF RFC 2608, June (1999)

  62. Shih, H.S., Shyur, H.J., Lee, E.S.: An extension of TOPSIS for group decision making. Math. Comput. Modell. 45, 801–813 (2007)

    Article  MATH  Google Scholar 

  63. Simona, M., Lazăr, I., Pârv, B., Czibula, I.: An agile MDA approach for service-oriented components. Electron. Notes Theor. Comput. Sci. 253(1), 95–110 (2009)

    Article  Google Scholar 

  64. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of Web services using semantic descriptions. In Proceedings of Web Services: Modeling, Architecture and Infrastructure workshop in conjunction with ICEIS2003, (2002)

  65. Sivashanmugam, K., Verma, K., Mulye, R., Zhong, Z., Sheth, A.: Speed-R: Semantic P2P environment for diverse web service registries, 2004. available at: http://webster.cs.uga.edu/~mulye/SemEnt/Speed-R.html

  66. Sun, C.C., Lin, G.T.R.: Using fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites. Expert Syst. Appl. 36, 11764–11771 (2009)

    Article  Google Scholar 

  67. UPnP Device Architecture 1.0, UPnP Forum, Dec. (2003)

  68. Wang, T.C., Chang, T.H.: Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Syst. Appl. 33, 870–880 (2007)

    Article  MathSciNet  Google Scholar 

  69. Wang, Y.J., Lee, H.S.: Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Comput. Math. Appl. 53(11), 1762–1772 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang, P., Chao, K.M., Lo, C.C., Huang, C.L., Li, Y.: A fuzzy model for selection of QoS-aware web services. In Proc. of IEEE ICEBE (2006)

  71. Wang, P., Chao, K.M., Lo, C.C.: On optimal decision for QoS-aware composite service selection. International Journal of Expert Systems with Applications 48(3), Elsevier Science, (2010)

  72. Yong, D.: Plant location selection based on fuzzy TOPSIS. Int. J. Adv. Manuf. Technol. 28, 839–844 (2006)

    Article  Google Scholar 

  73. Yoon, K., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction. Sage, Thousand Oaks (1985)

    Google Scholar 

  74. Yu, Q., Rege, M., Bouguettaya, A., Medjahed, B., Ouzzani, M.: A two-phase framework for quality-aware web service selection. Serv. Oriented Comput. Appl. 4(2), 63–79 (2010)

    Article  Google Scholar 

  75. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: a simulation comparison of select methods. Eur. J. Operat. Res. 107, 507–529 (1998)

    Article  MATH  Google Scholar 

  76. Zhang, M., Cheng, Z., Zhaol, Y., Huang, J.Z., Li, Y., Zag, B.: ADDI: An agent-based extension to UDDI for supply chain management. The 9th International Conference on Computer Supported Cooperative Work in Design Proceedings 1, 405–410, May 24–26, (2005)

  77. Zhao, H., Doshi, P.: A hierarchical framework for logical composition of web services. Serv. Oriented Comput. Appl. 3(4), 285–306 (2009)

    Article  Google Scholar 

  78. Zhu, Z., Chen, Y., Lan, R., Li, Z.: Study of MDA based semantic web service composition. Inf. Technol. J. 8(6) (2009).

  79. Zimmermann, H.J.: Fuzzy set theory and its applications. Kluwer, Boston (1991)

    MATH  Google Scholar 

  80. Zou, Z., Duan, Z.: Building business processes or assembling service components: Reuse services with BPEL4WS and SCA. Proceedings of the European Conference on Web Services (ECOWS’06), Zurich, Switzerland. Washington, DC: IEEE Computer Society, pp 138–147, Dec 4–6, (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Yuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, DY., Chao, KM., Lo, CC. et al. A user centric service-oriented modeling approach. World Wide Web 14, 431–459 (2011). https://doi.org/10.1007/s11280-011-0115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-011-0115-7

Keyword

Navigation