Skip to main content
Log in

Understanding social relationship evolution by using real-world sensing data

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Mobile and pervasive computing technologies enable us to obtain real-world sensing data for sociological studies, such as exploring human behaviors and relationships. In this paper, we present a study of understanding social relationship evolution by using real-life anonymized mobile phone data. First, we define a friendship as a directed relation, i.e., person A regards another person B as his or her friend but not necessarily vice versa. Second, we recognize human friendship from a supervised learning perspective. The Support Vector Machine (SVM) approach is adopted as the inference model to predict friendship based on a variety of features extracted from the mobile phone data, including proximity, outgoing calls, outgoing text messages, incoming calls, and incoming text messages. Third, we demonstrate the social relation evolution process by using the social balance theory. For the friendship prediction, we achieved an overall recognition rate of 97.0 % by number and a class average accuracy of 89.8 %. This shows that social relationships (not only reciprocal friends and non-friends, but non-reciprocal friends) can be likely predicted by using real-world sensing data. With respect to the friendship evolution, we verified that the principles of reciprocality and transitivity play an important role in social relation evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir, A., Efrat, A., Myllymaki, J., Palaniappan, L., Wampler, K.: Buddy tracking - efficient proximity detection among mobile friends. Pervasive Mob. Comput. 3(5), 489–511 (2007)

    Article  Google Scholar 

  2. Arb, M., Bader, M., Kuhn, M., Wattenhofer, R.: VENETA: Serverless friend-of-friend detection in mobile social networking, In WiMob 184–189 (2008)

  3. Barabasi, A.-L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A 311(3–4), 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonneau, J., Anderson, J., Anderson, R., Stajano, F.: Eight friends are enough: social graph approximation via public listings, In Proceedings of the Second ACM EuroSys Workshop on Social Network Systems, March 2009, 13–18 (2009)

  5. Carley, K.M., Krackhardt, D.: Cognitive inconsistencies and non-symmetric friendship. Soc. Netw. 18(1), 1–27 (1996)

    Article  Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

  7. Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl Data Eng, online. http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.271 (2011)

  8. Cho, A.: Ourselves and our interactions: the ultimate physics problem? Science 325(5939), 406–408 (2009)

    Article  Google Scholar 

  9. Cui, Y., Pei, J., Tang, G., Luk, W-S, Jiang, D., Hua, M.: Finding email correspondents in online social networks. World Wide Web, online, doi: 10.1007/s11280-012-0168-2 (2012)

  10. Dong, Z., Song, G., Xie, K,, Sun, Y., Wang, J.: Adequacy of data for mining individual friendship pattern from cellular phone call logs. The 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 573–577.

  11. Eagle, N.: Behavioral inference across cultures: using telephones as a cultural lens. IEEE Intell. Syst. 23(4), 62–64 (2008)

    Article  Google Scholar 

  12. Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad Sci. (PNAS) 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  13. Gonzalez, M.C., Barabasi, A.-L.: From data to models. Nat. Phys. 3, 224–225 (2007)

    Article  Google Scholar 

  14. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(5), 779–782 (2008)

    Article  Google Scholar 

  15. Hallinan, M.T.: The process of friendship formation. Soc. Netw. 1(2), 193–210 (1978)

    Article  Google Scholar 

  16. Heider, F.: The psychology of interpersonal relations. John Wiley and Sons, New York (1958)

    Book  Google Scholar 

  17. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical Report, (2005)

  18. Huynh, T., Fritz, M., Schiele, B. Discovery of activity patterns using topic models. In Ubicomp 10–19 (2008)

  19. Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In UbiComp 1–9 (2008)

  20. Khanafiah, D., Situngkir, H.: Social balance theory: revisiting Heider’s balance theory for many agents. Technical Report, Bandung Fe Institute (2004)

    Google Scholar 

  21. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In Proceedings of 12th International Conference on Knowledge Discovery in Data Mining (KDD 2006), 611–617.

  23. Lazer, D., et al.: Computational social science. Science 323(5915), 721–723 (2009)

    Article  Google Scholar 

  24. Leenders, R.T.A.J.: Evolution of friendship and best friendship choices. J. Math. Sociol. 21(1–2), 133–148 (1997)

    Google Scholar 

  25. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In KDD 462–470 (2008)

  26. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In WWW 915–924 (2008)

  27. Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data 3(2), Article 8, April 2009

  28. Liu, Y., Chen, L., Pei, J., Chen, Q., Zhao, Y.: Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. In PerCom 37–46 (2007)

  29. Malmgren, R.D., Hofman, J.M., Amaral, L.A.N., Watts, D.J.: Characterizing individual communication patterns. In KDD 607–616 (2009)

  30. Miklas, A. et al.: Exploiting social interactions in mobile systems. In UbiComp LNCS 4717, 409–428 (2007)

  31. Mitchell, T.M.: Mining Our reality. Science 326(5960), 1644–1645 (2009)

    Article  Google Scholar 

  32. Musiał, K., Kazienko, P.: Social networks on the Internet. World Wide Web, online, doi: 10.1007/s11280-011-0155-z (2012)

  33. Onnela, J.-P., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad Sci. (PNAS) 104(18), 7332–7336 (2007)

    Article  Google Scholar 

  34. Palla, G., Barabasi, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  Google Scholar 

  35. Quercia, D., Ellis, J., Capra, L.: Using mobile phones to nurture social networks. IEEE Pervasive Comput. 9(3), 12–20 (2010)

    Article  Google Scholar 

  36. Shilton, K.: Four billion little brothers: privacy, mobile phones, and ubiquitous data collection. Commun. ACM 52(11), 48–53 (2009)

    Article  Google Scholar 

  37. Song, C., Qu, Z., Blumm, N., Barabasi, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang, L., Wang, X., Liu, H. Scalable learning of collective behavior. IEEE Trans. Knowl. Data Eng. online. http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.38 (2011)

  39. Vapnik, V.N.: The nature of statistical learning theory. Springer Verlag, Heidelberg (1995)

    Book  MATH  Google Scholar 

  40. Vaquera, E., Kao, G.: Do you like me as much as i like you? Friendship reciprocity and its effects on school outcomes among adolescents. Soc. Sci. Res. 37(1), 55–72 (2008)

    Article  Google Scholar 

  41. Wesolowski, A., Eagle, N.: Parameterizing the dynamics of slums. AAAI Spring Symposium 2010 on Artifical Intelligence for Development (AI-D), 2010. (in press)

  42. Yang, B., Cheung, W.K., Liu, J.: Community mining from signed social networks. IEEE Trans. Knowl. Data Eng. 19(10), 1333–1348 (2007)

    Article  Google Scholar 

  43. Yu, Z., Zhou, X., Becker, C., Nakamura, Y.: Tree-based mining for discovering patterns of human interaction in meetings. IEEE Trans. Knowl. Data Eng. 24(4), 759–768 (2012)

    Article  Google Scholar 

  44. Zhang, D., Guo, B., Yu, Z.: The emergence of social and community intelligence. IEEE Comput. 44(7), 21–28 (2011)

    Article  Google Scholar 

  45. Zhang, D., Wang, Z., Guo, B., Yu, Z.: Social and community intelligence - Technologies and Trends. IEEE Softw. 29(4) (2012)

  46. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.Y.: Understanding transportation modes based on GPS data for web applications. ACM Trans. Web 4(1), 1–36 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Zhou, X., Zhang, D. et al. Understanding social relationship evolution by using real-world sensing data. World Wide Web 16, 749–762 (2013). https://doi.org/10.1007/s11280-012-0189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-012-0189-x

Keywords

Navigation