Skip to main content
Log in

Exploiting small world property for network clustering

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Graph partitioning is a traditional problem with many applications and a number of high-quality algorithms have been developed. Recently, demand for social network analysis arouses the new research interest on graph partitioning/clustering. Social networks differ from conventional graphs in that they exhibit some key properties like power-law and small-world property. Currently, these features are largely neglected in popular partitioning algorithms. In this paper, we present a novel framework which leverages the small-world property for finding clusters in social networks. The framework consists of several key features. Firstly, we define a total order, which combines the edge weight, the small-world weight, and the hub value, to better reflect the connection strength between two vertices. Secondly, we design a strategy using this ordered list, to greedily, yet effectively, refine existing partitioning algorithms for common objective functions. Thirdly, the proposed method is independent of the original approach, such that it could be integrated with any types of existing graph clustering algorithms. We conduct an extensive performance study on both real-life and synthetic datasets. The empirical results clearly demonstrate that our framework significantly improves the output of the state-of-the-art methods. Furthermore, we show that the proposed method returns clusters with both internal and external higher qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Technical Report TR 05-034 (2005)

  2. Agarwal, G., Kempe, D.: Modularity-maximizing network communities via mathematical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. PNAS 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  4. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Proc. of WAW (2009)

  5. Brandes, U., Delling, D., Gaertler, M., GÖrke R.M. Hoefer, Z.N., Wagner, D.: On modularity clustering. TKDE 20(2), 172–188 (2008)

    Google Scholar 

  6. Bui, T., Jones., C.: A heuristic for reducing fill in sparse matrix factorization. In: Proc. of 6th SIAM Conf. Parallel Processing for Scientific Computing, pp. 445–452 (1993)

  7. Comellas, F., Ozón, J., Peters, J.G.: Deterministic small-world communication networks. Inf. Process. Lett. 76(2), 83–90 (2000)

    Article  Google Scholar 

  8. Medus, A., AcuÑa, G., Dorso, C.O.: Detection of community structures in networks via global optimization. Physica A 358, 593–604 (2005)

    Article  Google Scholar 

  9. Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means, spectral clustering and normalized cuts. In: Prof. the 10th SIGKDD (2004)

  10. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities in the web. In: Proc. of WWW (2007)

  11. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities in the web. In: Proc. of WWW (2007)

  12. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  13. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. In: Proc. 19th IEEE Design Automation Conference, pp. 175–181 (1982)

  14. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proc. of SIGKDD. (2000)

  15. Forunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hauck, S., Borriello, G.: An evaluation of bipartitioning technique. In: Proc. Chapel Hill Conference on Advanced Research in VLSI (1995)

  17. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  18. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  19. Khuller, S., Saha, B.: On finding dense subgraphs. In: Proc. of ICALP (2009)

  20. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a kernel approach. In: Proc. of 22nd ICML (2005)

  21. Latora, V., Marchiori, M.: Bs the Boston subway a small-world network? Physica A 314, 109–113 (2002)

    Article  MATH  Google Scholar 

  22. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(016118) (2009)

  23. Leighton, F., Rao, S.: Multi-commodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proc. of SIGKDD (2005)

  25. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), Article 2 (2007)

    Article  Google Scholar 

  26. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: Proc. of WWW (2010)

  27. Mardia, K.: Multivariate Analysis. Academic Press (1979)

  28. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retr. J. 3, 127–163 (2000)

    Article  Google Scholar 

  29. Montoya, J.M., Solé, R.V.: Small world patterns in food webs. J. Theor. Biol. 214(3), 405–412 (2002)

    Article  Google Scholar 

  30. Medus, A., AcuÑa, G., Dorso, C.: Detection of community structures in networks via global optimization. Physica A 358, 593–604 (2005)

    Article  Google Scholar 

  31. Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E69, 066–133 (2004)

    Google Scholar 

  32. Newman, M.: From the cover: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  33. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 14, 849–856 (2001)

    Google Scholar 

  34. Ralitsa, A., Gerhard, W.: Graph-based text classification: learn from your neighbors. In: Proc. of the 29th SIGIR, pp. 485–492 (2006)

  35. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. LNCS 2870, 351–368 (2003)

    Google Scholar 

  36. Schaeffer, S.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MathSciNet  Google Scholar 

  37. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proc. of CVPR., pp. 731–737 (1997)

  38. Sol, A.d., Fujihashi, H., O’Meara, P.: Topology of small-world networks of protein-protein complex structures. Bioinformatics 21(8), pp. 1311–1315 (2005)

    Article  Google Scholar 

  39. Tang, L., Wang, X., Liu, H.: Uncovering groups via heterogeneous interaction analysis. In: Proc. of ICDM, pp. 503–512 (2009)

  40. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv:cond-mat/0604419v1 (2006)

  41. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  42. Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting overlapping community structures in networks. World Wide Web J. 12, 235–261 (2009)

    Article  Google Scholar 

  43. Zhang, S., Luo, X., Xuan, J., Chen, X., Xu, X.: Discovering small-world in association link networks for association learning. World Wide Web J. (2012). doi:10.1007/s11280-012-0171-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyun Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, T., Li, Q., Srivastava, J. et al. Exploiting small world property for network clustering. World Wide Web 17, 405–425 (2014). https://doi.org/10.1007/s11280-013-0209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-013-0209-5

Keywords

Navigation