Abstract
The advancement in game technology has served to enrich player’s gaming experience in a substantial way. Nowadays, it is common to have blockbuster quality games, with realistic graphics and engaging stories. Despite this, the progress made in incorporating Artificial Intelligence has been slow, and realistic human-like intelligence in games is hardly to be found. There have been some attempts to use Machine Learning in games, but such attempts often ended up impractical or affecting the players enjoyment due to several constraining factors. In this paper, we describe Meme War as a proof-of-concept for practical usage of Machine Learning in games. We introduce Extreme Learning Machine (ELM) as one approach to achieve a better experience in employing Machine Learning in games. Advantages of ELM over Multilayer Perceptron (MLP) are presented in terms of what ELM can offer in a practical point of view of the player.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blackmore, S.: The Meme Machine. Oxford University Press, New York (1999)
Brockington, M., Darrah, M.: How not to implement a basic scripting language. In: Rabin, S. (ed.) AI Game Programming Wisdom, chap. 10, pp. 548–554. Charles River Media (2002)
Cao, Q., Lim, M.H., Li, J.H., Ong, Y.S., Ng, W.L.: A context switchable fuzzy inference chip. IEEE Trans. Fuzzy Syst. 14(4), 552–567 (2006)
Chen, X., Ong, Y.S.: A conceptual modeling of meme complexes in stochastic search. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(5), 612–625 (2012)
Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evolution. Comput. 15(5), 591–607 (2011)
Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Contr. Signals Syst. (MCSS) 2(4), 303–314 (1989). doi:10.1007/BF02551274
Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
Demasi, P., de O. Cruz, A.J.: Online coevolution for action games. Int. J. Intell. Games Simul. 2(2), 80–88 (2003)
Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009). doi:10.1109/TNN.2009.2024147
Grant, E.F., Lardner, R.: The talk of the town - It. http://www.newyorker.com/archive/1952/08/02/1952_08_02_018_TNY_CARDS_000236053 (1952). [Online] Accessed 23 May 2012
Grants, G.: Memetic Lexicon (1990). http://www.lucifer.com/virus/memlex.html. Accessed 23 May 2012
Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70, 3056–3062 (2007). doi:10.1016/j.neucom.2007.02.009
Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006). doi:10.1109/TNN.2006.875977
Huang, G.B., Wang, D., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2, 107–122 (2011)
Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012). doi:10.1109/TSMCB.2011.2168604
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
Kan, E., Lim, M., Ong, Y., Tan, A., Yeo, S.: Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput. Appl. 22(3–4), 469–477 (2013). doi:10.1007/s00521-012-0866-9
Laird, J.E., van Lent, M.: Human-level AI’s killer application: interactive computer games. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 1171–1178. AAAI Press / The MIT Press (2000). http://citeseer.ist.psu.edu/laird00humanlevel.html
Lynch, A.: Thought contagion as abstract evolution. J. Ideas 2, 3–10 (1991)
Malathi, V., Marimuthu, N., Baskar, S.: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection. Neurocomputing 73(10–12), 2160–2167 (2010). doi:10.1016/j.neucom.2010.02.001. http://www.sciencedirect.com/science/article/pii/S0925231210000822
Meuth, R., Lim, M.H., Ong, Y.S., Wunsch II, D.C.: A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comp. 1(2), 85–100 (2009)
Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011). doi:10.1016/j.neucom.2010.12.042
Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally-pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010). doi:10.1109/TNN.2009.2036259
Miles, C., Louis, S.J., Cole, N., McDonnell, J.: Learning to play like a human: case injected genetic algorithms applied to strategic computer game playing. In: Proceedings of the IEEE Congress on Evolutionary Computation - CEC (2004)
Minhas, R., Baradarani, A., Seifzadeh, S., Wu, Q.J.: Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10–12), 1906–1917 (2010). doi:10.1016/j.neucom.2010.01.020. http://www.sciencedirect.com/science/article/pii/S0925231210001517
Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. B, Cybern. (USA) 36(1), 141–152 (2006)
Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)
Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-competitive agents in modern computer games. In: IEEE Congress on Evolutionary Computation - CEC, pp. 777–784 (2006)
Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. John Wiley & Sons Inc, New York (1972)
Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC (1962)
Schaeffer, J.: A gamut of games. AI Magaz. 22(3), 29–46 (2001)
Scott, B.: The illusion of intelligence. In: Rabin, S. (ed.) AI Game Programming Wisdom, chap. 1, pp. 16–20. Charles River Media (2002)
Singapore-mit game lab gambit. http://gambit.mit.edu/. Accessed 23 May 2012
Snider, M.: Video game sales have disappointing december and annual drop. (2012) http://content.usatoday.com/communities/gamehunters/post/2012/01/video-game-sales-have-disappointing-december-and-annual-drop/1#.T-MHCG-76Go
Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Online adaptation of game opponent ai in simulation and in practice. In: Mehdi, Q., Gough, N., Natkin, S. (eds.) Proceedings of the 4th International Conference on Intelligent Games and Simulation, pp. 93–100 (2003)
Stanley, K., Bryant, B., Karpov, I., Miikkulainen, R.: Real-time evolution of neural networks in the nero video game. In: Proceedings Twenty-First National Conference on Artificial Intelligence (AAAI-06). Eighteenth Innovative Applications of Artificial Intelligence Conference (IAAI-06), vol. 2, pp. 1671–1674 (2006)
Tozour, P.: The evolution of game AI. In: Rabin, S. (ed.) AI Game Programming Wisdom, chap. 1, pp. 3–15. Charles River Media (2002)
Tozour, P.: The perils of ai scripting. In: Rabin, S. (ed.) AI Game Programming Wisdom, chap. 10, pp. 541–547. Charles River Media (2002)
van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 74(16), 2430–2437 (2011). doi:10.1016/j.neucom.2010.11.034
Wang, G., Zhao, Y., Zhao, X., Wang, B., Qiao, B.: Efficiently mining local conserved clusters from gene expression data. Neurocomputing 73(7–9), 1425–1437 (2010). doi:10.1016/j.neucom.2009.11.009
Woodcock, S.: Game AI: The State of the Industry. Game Developer Magazine (2002)
Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013). doi:10.1016/j.neucom.2012.02.040
Zhao, X., Wang, G., Bi, X., Gong, P., Zhao, Y.: Xml document classification based on elm. Neurocomputing 74(16), 2444–2451 (2011). doi:10.1016/j.neucom.2010.12.038. http://www.sciencedirect.com/science/article/pii/S0925231211002529
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miche, Y., Lim, MH., Lendasse, A. et al. Meme representations for game agents. World Wide Web 18, 215–234 (2015). https://doi.org/10.1007/s11280-013-0219-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-013-0219-3