Abstract
In this work, we aim to discover real-world events from Flickr data by devising a three-stage event detection framework. In the first stage, a multimodal fusion (MF) model is designed to deal with the heterogeneous feature modalities possessed by the user-shared data, which is advantageous in computation complexity. In the second stage, a dual graph regularized non-negative matrix factorization (DGNMF) model is proposed to learn compact feature representations. DGNMF incorporates Laplacian regularization terms for the data graph and base graph into the objective, keeping the geometry structures underlying the data samples and dictionary bases simultaneously. In the third stage, hybrid clustering algorithms are applied seamlessly to discover event clusters. Extensive experiments conducted on the real-world dataset reveal the MF-DGNMF-based approaches outperform the baselines.
Similar content being viewed by others
References
Ahsan, U., Essa, I.: Clustering social event images using kernel canonical correlation analysis. In: Computer Vision and Pattern Recognition Workshops, 2014 IEEE Conference on, pp. 814–819 (2014)
Ah-Pine, J., Csurka, G., Clinchant, S.: Semi-supervised visual and textual information fusion in CBMIR using graph-based methods. ACM Trans. Inf. Syst. (TOIS) 33(2), 9 (2015)
Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1977–1984 (2011)
Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)
Cands, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)
Chen, L., Roy, A.: Event detection from flickr data through wavelet-based spatial analysis. In: Proceedings of the 18th ACM conference on Information and knowledge management, pp. 523–532 (2009)
Chen, J., Cui, Y., Ye, G., Liu, D., Chang, S.F.: Event-driven semantic concept discovery by exploiting weakly tagged internet images. In: Proceedings of International Conference on Multimedia Retrieval, p. 1 (2014)
Choi, J., Kim, E., Larson, M., Friedland, G., Hanjalic, A.: Evento 360: Social event discovery from Web-scale multimedia collection (2015)
Duan, K., Crandall, D.J., Batra, D.: Multimodal learning in loosely-organized Web images. In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 2465–2472 (2014)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)
Hyvrinen, A., Karhunen, J., Oja, E.: Independent component analysis (Vol. 46) John Wiley & Sons (2004)
Jiang, X., Lai, J.: Sparse and dense hybrid representation via dictionary decomposition for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1067–1079 (2015)
Jolliffe, I.: Principal component analysis. John Wiley & Sons Ltd (2002)
Kim, G., Sigal, S.M.L.: Joint photo stream and blog post summarization and exploration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3081–3089 (2015)
Lee, D.D., Sebastian Seung, H.: Algorithms for non-negative matrix factorization. Advances in neural information processing systems, 556–562 (2001)
Li, R., Lei, K.H., Khadiwala, R., Chang, K.: Tedas: A twitter-based event detection and analysis system. In: Data engineering (ICDE), 2012 IEEE 28th international conference on, pp. 1273–1276 (2001)
Li, Z., Liu, J., Tang, J., Lu, H.: Robust structured subspace learning for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2085–2098 (2015)
Liu, X., Huet, B.: Heterogeneous features and model selection for event-based media classification. In: 3rd ACM International Conference on Multimedia Retrieval, pp. 151–158 (2013)
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
Liu, G., Xu, H., Tang, J., Liu, Q., Yan, S.: A deterministic analysis for LRR. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 417–430 (2015)
Nitta, N., Kumihashi, Y., Kato, T., Babaguchi, N.: Real-World Event detection using flickr images. In: MultiMedia Modeling, pp. 307–314 (2014)
Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Social event detection using multimodal clustering and integrating supervisory signals. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, p. 23 (2012)
Petkos, G., Papadopoulos, S., Mezaris, V., Kompatsiaris, Y.: Social event detection at MediaEval 2014: Challenges, datasets, and evaluation. In: MediaEval 2014 Workshop, Barcelona, Spain (2014)
Qian, S., Zhang, T., Xu, C., Hossain, M.S.: Social event classification via boosted multimodal supervised latent dirichlet allocation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 11(2), 27 (2014)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web, pp. 851–860 (2010)
Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)
Schinas, M., Papadopoulos, S., Petkos, G., Kompatsiaris, Y., Mitkas, P.A.: Multimodal graph-based event detection and summarization in social media streams. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pp. 189–192 (2015)
Shekhar, S., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 113–126 (2014)
Snoek, C.G.M., Worring, M., Smeulders, A.W.M.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th annual ACM international conference on Multimedia, pp. 399–402 (2005)
Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)
Sutanto, T., Nayak, R.: The ranking based constrained document clustering method and its application to social event detection. In: Database Systems for Advanced Applications, pp. 47–60 (2014)
Sutanto, T., Nayak, R.: Ranking based clustering for social event detection. In: Working Notes Proceedings of the MediaEval 2014 Workshop, vol. 1263, pp. 1–2 (2014)
Wang, Y., Sundaram, H., Xie, L.: Social event detection with interaction graph modeling. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 865–868 (2012)
Wu, F., Yu, Z., Yang, Y., Tang, S., Zhang, Y., Zhuang, Y.: Sparse multi-modal hashing. IEEE Trans. Multimedia 16(2), 427–439 (2014)
Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., Pan, H.: Semi-supervised multimodal clustering algorithm integrating label signals for social event detection. In: Multimedia Big Data (BigMM), 2015 IEEE International Conference on, pp. 32–39 (2015)
Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., Pan, H., Chen, Y.: Semi-Supervised Multimodal fusion model for social event detection on web image collections. Int. J. Multimedia Data Eng. Manag. (IJMDEM) 6(4), 1–22 (2015)
Yang, X., Zhang, T., Xu, C., Hossain, M.S.: Automatic visual concept learning for social event understanding. IEEE Trans. Multimedia 17(3), 346–358 (2015)
Yang, Z., Li, Q., Liu, W., Ma, Y.: Learning manifold representation from multimodal data for event detection in Flickr-like social media, The 3rd International Workshop on Semantic Computing and Personalization in conjunction with The 21th International Conference on Database Systems for Advanced Applications, 160–167 (2016)
Yin, M., Gao, J., Lin, Z.: Laplacian regularized low-rank representation and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 504–517 (2015)
Zhang, Z., Zhao, K.: Low-rank matrix approximation with manifold regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1717–1729 (2015)
Zhang, W., Zeng, S., Wang, D., Xue, X.: Weakly supervised semantic segmentation for social images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2718–2726 (2015)
Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J. 23(3), 381–400 (2014)
Zhuang, L., Gao, S., Tang, J., Wang, J., Lin, Z., Ma, Y.: Constructing a non-Negative low rank and sparse graph with data-adaptive features. IEEE Trans. Image Process. 24(11), 3717–3728 (2015)
Acknowledgments
We would like to thank Dr. Zheng Lu and Mr. Yangbin Chen for all the discussions. The research described in this paper has been supported by a National Natural Science Foundation of China (Project no. 61472337).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yang, Z., Li, Q., Liu, W. et al. Dual graph regularized NMF model for social event detection from Flickr data. World Wide Web 20, 995–1015 (2017). https://doi.org/10.1007/s11280-016-0405-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-016-0405-1