Abstract
The proliferation of GPS-enabled smart mobile devices enables us to collect a large-scale trajectories of moving objects with GPS tags. While the raw trajectories that only consists of positional information have been studied extensively, many recent works have been focusing on enriching the raw trajectories with semantic knowledge. The resulting data, called activity trajectories, embed the information about behaviors of the moving objects and support a variety of applications for better quality of services. In this paper, we propose a Top-k Spatial Keyword (TkSK) query for activity trajectories, with the objective to find a set of trajectories that are not only close geographically but also meet the requirements of the query semantically. Such kind of query can deliver more informative results than existing spatial keyword queries for static objects, since activity trajectories are able to reflect the popularity of user activities and reveal preferable combinations of facilities. However, it is a challenging task to answer this query efficiently due to the inherent difficulties in indexing trajectories as well as the new complexity introduced by the textual dimension. In this work, we provide a comprehensive solution, including the novel similarity function, hybrid indexing structure, efficient search algorithm and further optimizations. Extensive empirical studies on real trajectory set have demonstrated the scalability of our proposed solution.











Similar content being viewed by others
References
Alvares, L., Bogorny, V., Kuijpers, B., de Macedo, J., Moelans, B., Vaisman, A.: A Model for Enriching Trajectories with Semantic Geographical Information. In: GIS, pp. 1–8 (2007)
Cai, Y., Ng, R.: Indexing Spatio-Temporal Trajectories with Chebyshev Polynomials. In: SIGMOD, pp. 599–610 (2004)
Cao, X., Cong, G., Jensen, C., Ooi, B.: Collective Spatial Keyword Querying. In: SIGMOD (2011)
Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial Web objects. Proc. VLDB Endowment 3(1-2), 373–384 (2010)
Chakka, V., Everspaugh, A., Patel, J.: Indexing Large Trajectory Data Sets with Seti. In: CIDR (2003)
Chen, L., Özsu, M., Oria, V.: Robust and Fast Similarity Search for Moving Object Trajectories. In: SIGMOD, pp. 491–502 (2005)
Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text Vs. Space: Efficient Geo-Search Query Processing. In: Proceedings of the 20Th ACM International Conference on Information and Knowledge Management, pp. 423–432 (2011)
Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc. VLDB Endowment 2(1), 337–348 (2009)
Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an Adaptive Storage System for Very Large Trajectory Data Sets. In: ICDE, pp. 109–120 (2010)
De Felipe, I., Hristidis, V., Rishe, N.: Keyword Search on Spatial Databases. In: ICDE, pp. 656–665 (2008)
Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: SIGKDD, vol. 96, pp. 226–231 (1996)
Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. SSTD 328–345 (2005)
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory Pattern Mining. In: SIGKDD, pp. 330–339 (2007)
Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing Spatial-Keyword (Sk) Queries in Geographic Information Retrieval (Gir) Systems. In: SSBDM, pp. 16–25 (2007)
Hjaltason, G., Samet, H.: Incremental distance join algorithms for spatial databases. ACM SIGMOD Record 27(2), 237–248 (1998)
Hua,W.,Wang, Z.,Wang, H., Zheng, K., Zhou, X.: Short Text Understanding through Lexical-Semantic Analysis. In: 2015 IEEE 31St International Conference on Data Engineering, pp. 495–506 (2015)
Jeung, H., Shen, H., Zhou, X.: Convoy Queries in Spatio-Temporal Databases. In: ICDE, pp. 1457–1459 (2008)
Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajectory databases. Proc. VLDB Endowment 1(1), 1068–1080 (2008)
Lee, J., Han, J., Whang, K.: Trajectory Clustering: a Partition-And-Group Framework. In: SIGMOD, p 604 (2007)
Li, Z., Ding, B., Han, J., Kays, R.: Swarm: Mining relaxed temporal moving object clusters. Proc. of the VLDB Endowment 3(1-2), 723–734 (2010)
Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining Periodic Behaviors for Moving Objects. In: SIGKDD, pp. 1099–1108 (2010)
Lu, J., Lu, Y., Cong, G.: Reverse Spatial and Textual K Nearest Neighbor Search. In: SIGMOD (2011)
Mao, R., Xu, H., Wu, W., Li, J., Li, Y., Lu, M.: Overcoming the challenge of variety: big data abstraction, the next evolution of data management for aal communication systems. IEEE Commun. Mag. 53(1), 42–47 (2015)
Mao, R., Zhang, P., Li, X., Liu, X., Lu, M.: Pivot selection for metric-space indexing. Int. J. Mach. Learn. Cybern. 7(2), 311–323 (2016)
Ni, J., Ravishankar, C.: Indexing spatio-temporal trajectories with efficient polynomial approximations. TKDE 19(5), 663–678 (2007)
Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approaches in Query Processing for Moving Object Trajectories. In: VLDB, pp. 395–406 (2000)
Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approaches to the Indexing of Moving Object Trajectories. In: VLDB, pp. 395–406 (2000)
Sefling, R.J.: Approximation theorems of mathematical statistics wiley (1980)
Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J.R., Kalnis, P.: Collective travel planning in spatial networks. IEEE Trans. Knowl. Data Eng. 28(5), 1132–1146 (2016)
Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)
Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.R.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)
Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.R.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)
Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering Similar Multidimensional Trajectories. In: ICDE, p 0673 (2002)
Wang, H., Su, H., Zheng, K., Sadiq, S., Zhou, X.: An Effectiveness Study on Trajectory Similarity Measures. In: Proceedings of the Twenty-Fourth Australasian Database Conference-Volume 137, Pp. 13–22. Australian Computer Society, Inc (2013)
Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: Sharkdb: an In-Memory Column-Oriented Trajectory Storage. In: Proceedings of the 23Rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1409–1418 (2014)
Wang, J., Huang, J.Z., Guo, J., Lan, Y.: Recommending high-utility search engine queries via a query-recommending model. Neurocomputing 167, 195–208 (2015)
Wu, D., Yiu, M., Jensen, C., Cong, G.: Efficient Continuously Moving Top-K Spatial Keyword Query Processing. In: ICDE (2011)
Xie, K., Deng, K., Zhou, X.: From Trajectories to Activities: a Spatio-Temporal Join Approach. In: International Workshop on Location Based Social Networks, pp. 25–32 (2009)
Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semitri: a Framework for Semantic Annotation of Heterogeneous Trajectories. In: EDBT, pp. 259–270 (2011)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-drive: Enhancing driving directions with taxi drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25(1), 220–232 (2013)
Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards Efficient Search for Activity Trajectories. In: ICDE (2013)
Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive Top-K Spatial Keyword Queries. In: 2015 IEEE 31St International Conference on Data Engineering, pp. 423–434 (2015)
Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding Mobility Based on Gps Data. In: International Conference on Ubiquitous Computing, pp. 312–321 (2008)
Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)
Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining Interesting Locations and Travel Sequences from Gps Trajectories. In: WWW, pp. 791–800 (2009)
Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.: Hybrid Index Structures for Location-Based Web Search. In: CIKM, pp. 155–162 (2005)
Zhu, Z., Xiao, J., Li, J., Wang, F., Zhang, Q.: Global path planning of wheeled robots using multi-objective memetic algorithms. Integrated Comput.-Aided Eng. 22(4), 387–404 (2015)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 1–56 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zheng, K., Zheng, B., Xu, J. et al. Popularity-aware spatial keyword search on activity trajectories. World Wide Web 20, 749–773 (2017). https://doi.org/10.1007/s11280-016-0414-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-016-0414-0