
Scalable and Fast SVM Regression using Modern

Hardware

Zeyi Wen∗, Rui Zhang∗, Kotagiri Ramamohanarao∗, Li Yang#1

{zeyi.wen, rui.zhang, kotagiri}@unimelb.edu.au, hbyangli@hue.edu.cn
∗Department of Computing and Information Systems, The University of Melbourne,

VIC, Australia

#Department of Computer Science, HuBei University of Education, Wuhan, P.R. China

Abstract

Support Vector Machine (SVM) regression is an important technique in data
mining. The SVM training is expensive and its cost is dominated by: (i) the
kernel value computation, and (ii) a search operation which finds extreme
training data points for adjusting the regression function in every training
iteration. Existing training algorithms for SVM regression are not scalable
to large datasets because: (i) each training iteration repeatedly performs ex-
pensive kernel value computations, which is inefficient and requires holding
the whole training dataset in memory; (ii) the search operation used in each
training iteration considers the whole search space which is very expensive.
In this article, we significantly improve the scalability and efficiency of SVM
regression by exploiting the high performance of Graphics Processing Units
(GPUs) and solid state drives (SSDs). Our key ideas are as follows. (i) To
reduce the cost of repeated kernel value computations and avoid holding the
whole training dataset in the GPU memory, we precompute all the kernel val-
ues and store them in the CPU memory extended by the SSD; together with
an efficient strategy to read the precomputed kernel values, reusing precom-
puted kernel values with an efficient retrieval is much faster than computing
them on-the-fly. This also alleviates the restriction that the training dataset
has to fit into the GPU memory, and hence makes our algorithm scalable
to large datasets, especially for large datasets with very high dimensional-
ity. (ii) To enhance the performance of the frequently used search operation,
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we design an algorithm that minimizes the search space and the number of
accesses to the GPU global memory; this optimized search algorithm also
avoids branch divergence (one of the causes for poor performance) among
GPU threads to achieve high utilization of the GPU resources. Our pro-
posed techniques together form a scalable solution to the SVM regression
which we call SIGMA. Our extensive experimental results show that SIGMA
is highly efficient and can handle very large datasets which the state-of-the-
art GPU-based algorithm cannot handle. On the datasets of size that the
state-of-the-art GPU-based algorithm can handle, SIGMA consistently out-
performs the state-of-the-art GPU-based algorithm by an order of magnitude
and achieves up to 86 times speedup.

Keywords: Regression, Support Vector Machines, GPUs, SSDs

1. Introduction

Support Vector Machine (SVM) regression [28] is a widely used machine
learning model in many real world applications, such as financial time series
forecasting [20], face recognition [21] and outlier detection [18]. Training the
SVM regression model requires finding an optimal function that is consistent
with as many of the training data points as possible and meanwhile, that is
as smooth as possible, such that the function can predict the unseen data
more accurately. To find a non-linear regression function, SVMs use a kernel
function [26] to map the training data points from the original data space to a
higher dimensional data space where an optimal function may exist. In each
training iteration of the regression2, the kernel function is computed to obtain
kernel values which are used to check whether the currently found function
is optimal. If the optimal condition is not met, the search operations are
performed to obtain extreme training data points which are used to adjust
the currently found regression function.

The SVM training is expensive and its cost is dominated by: (i) the
kernel value computation, and (ii) a search operation which finds extreme
training data points for adjusting the regression function in every training
iteration. Due to a large number of expensive kernel value computations
(time complexity of kernel value computations in each training iteration is

2When the context is clear, we omit “SVM” in the rest of this article, similarly for the
SVM training
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O(nd), where n is the number of training data points; d is the number of
dimensions.) and the search operations (time complexity of O(n)), CPU-
based training algorithms do not scale to large datasets. As we will discuss
in Section 2, MapReduce is not suited to the SVM training (reasons are
given in Section 2.2). Hence, recent studies [5, 2] attempt to use Graphics
Processing Units (GPUs) to accelerate the training to handle large datasets.
However, existing GPU-based training algorithms are not scalable because:
(i) each training iteration needs to perform expensive kernel value computa-
tions, which is inefficient and also requires holding the whole training dataset
in the GPU memory; the high computation cost and memory size constraint
make the algorithms unsuitable to large datasets; (ii) the search operation
used in each training iteration considers the whole search space, which is
expensive. Even using a high-end NVIDA GPU, GTX 780, which has 3GB
GPU memory and assuming 4 bytes to store a value, existing GPU-based al-
gorithms can slowly process a dataset of only 40,000 data points with 20,000
dimensions (each dimension of a data point is a value). They are far from
being able to handle large datasets emerging in many new applications such
as the YouTube Multiview dataset (120,000 data points of 1,000,000 dimen-
sions), the Webspam dataset (350,000 data points of 16,609,143 dimensions)
and the Gas Sensor dataset (18,000 data points of 1,950,000 dimensions)3.
Note that it is inefficient for those GPU-based algorithms to store the datasets
in the CPU memory, because transferring the whole dataset from the CPU
memory4 to the GPU memory for computing kernel values in each training
iteration is too expensive.

As mining large datasets is becoming more common, the demand for
an efficient and scalable training algorithm for the SVM regression is com-
pelling. In this article, we present an efficient solution by exploiting the high
performance of modern hardware, particularly the GPU as in the case of the
state-of-the-art method and solid state drives (SSDs). We call our solution
Svm regressIon usinG Modern hArdware (SIGMA). This article is an exten-
sion of our earlier conference paper [33]. There we proposed the MASCOT
scheme for SVM cross-validation in the SVM classification settings and made
the following contributions.

3The datasets are found in LibSVM site and UCI repository.
4To distinguish from the GPU memory, we use “the CPU memory” instead of “main

memory” in this article.
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• To reduce the cost of repeated kernel value computations and avoid
storing the whole training dataset in the memory, we precomputed the
kernel values, store them to main memory extended by SSDs, and reuse
them; together with smart reuse strategies, reusing the kernel values is
much faster than computing them on-the-fly. This also alleviates the
restriction that the training dataset has to fit into the GPU memory,
and hence makes our algorithm scalable.

• To further improve the efficiency of the training, we proposed efficient
approaches to reading kernel values in parallel, a caching strategy well-
suited to kernel values’ access pattern, and an efficient GPU-based
search algorithm.

• We conducted extensive experiments to evaluate the performance of
MASCOT.

In this article, we extend our work by making the following additional con-
tributions.

• We design a highly optimized search algorithm called “Tight Search”
to improve the search operation; Tight Search minimizes the search
space and the number of accesses to the GPU global memory which
has high-latency, and avoids branch divergence among GPU threads to
achieve high utilization of the GPU resources (Section 4.2.2).

• We extend our MASCOT scheme to support the SVM regression, and
make use of the properties of the SVM regression to efficiently compute
and store a compact kernel matrix (Section 4).

• We conduct extensive experiments to evaluate the performance of SIGMA.
Our experimental results show that SIGMA is efficient and scalable to
large datasets which the state-of-the-art GPU-based training algorithm
cannot handle. On the datasets of size that the state-of-the-art algo-
rithm can handle, SIGMA consistently outperforms the state-of-the-art
algorithm by an order of magnitude. Furthermore, we have conducted
experiments using LibSVM, the CPU-based algorithm. We have found
that LibSVM is extremely slow, so we integrate our kernel value pre-
computation technique into LibSVM and compare LibSVM with kernel
value precomputation with SIGMA. The results show that SIGMA sig-
nificantly outperforms LibSVM with kernel value precomputation by
up to 82 times (Section 5).
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The remainder of this article is organized as follows. We review the
related literature in Section 2 and present the SVM regression and describe
the necessary preliminaries in Section 3. Then, we elaborate our solution
SIGMA in Section 4, and report our experimental study in Section 5. Finally,
we conclude this article in Section 6.

2. Related work

In this section, we review the related work in the SVM regression. Smola
and Scholkopf provided an excellent tutorial on the SVM regression in [28].
Here, we first focus on the training for the SVM regression and categorize
the existing work into three groups: (i) SVM training using CPUs; (ii) SVM
training using MapReduce and (iii) SVM training using GPUs. Then, we
present the existing work in kernel value caching.

2.1. SVM training using CPUs

2.1.1. CPU-based sequential SVM training

Osuna et al. [24] proposed a decomposition based SVM training algo-
rithm. The algorithm divides the training data points into chunks (whose
size is typically determined by the memory size). In each iteration, one of
the chunks is used to update the optimality indicators. The process contin-
ues until convergence. SVMlight [16] is an implementation of SVMs based on
Osuna et al.’s algorithm.

Platt [25] proposed the Sequential Minimal Optimization (SMO) algo-
rithm to train SVMs for classification problems. The algorithm only uses
two training data points to update the optimality indicators for all the train-
ing data points in each iteration. Flake and Lawrence [11] generalized the
SMO algorithm to handle the SVM regression problems. Fan et al. [10]
proposed the second order heuristic to select the two training data points
in SMO, which achieves an even faster convergence in the SVM training.
LibSVM [6] is an implementation of SVMs based on SMO using the second
order heuristic.

Another SVM training algorithm [17] uses the cutting-plane approach
to improve the training efficiency, but that algorithm only applies to linear
SVMs. Shai et al. [27] proposed a training algorithm called “Pegasos” which
demonstrates advantage on training linear SVMs. These studies differ from
ours, as our goal is to propose a scalable and efficient training algorithm that
can handle linear or non-linear kernels.
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2.1.2. CPU-based parallel SVM training

We use GPUs instead of a multi-core CPU because the SVM training is
expensive and to achieve a highly efficient SVM training algorithm requires a
very high level of parallelism. The SVM training is expensive for the following
three reasons (n and d are the cardinality and the dimensionality of the
training dataset, respectively). First, the SVM training requires computing
the kernel values which is expensive. More specifically, the time complexity
of computing the kernel values on-the-fly in each training iteration is O(nd);
the time complexity of the kernel value precomputation is O(n2d). Second,
the search for the minimum/maximum value in the SVM training has the
time complexity of O(n). Third, the SVM training requires updating all
the optimality indicators which has the time complexity of O(n). The SVM
training is very expensive, especially when the data dimension is high or
the data cardinality is large. To achieve a highly efficient SVM training
algorithm requires a very high level of parallelism. Therefore, GPUs with a
large number of cores are more favorable than the CPU with only a few cores
in the SVM training.

Some studies [37, 15] attempt to use a multi-core CPU to accelerate the
SVM training. As reported in the studies, the multi-core CPU-based algo-
rithms achieve upto six times speedup compared with LibSVM. The speedup
of the GPU-based algorithms [2, 8] is more than ten times, which indicates
that GPUs are better suited for the SVM training.

2.2. SVM training using MapReduce

MapReduce (both CPU-based and GPU-based [13]) is not suited for the
SVM training. The reason is that the SVM training is a global optimization
process. Partitioning training data points causes that the support vectors
obtained by each mapper are only based on a partition of training data
points. After the reduce phase, the locally obtained support vectors put
together are unlikely to correspond to those of the globally optimal SVM.
Hence, it is difficult for a single round of MapReduce based SVM training
process to meet the optimal condition (i.e., the combined support vectors
obtained in the current round of MapReduce training job are the same as
those in the previous round), which results in a large amount of repeated
computation. Previous studies attempt using MapReduce to accelerate the
training either by sacrificing the accuracy or by only handling some special
cases. The recent studies [3, 12] attempt to improve the training efficiency
by producing approximated results. Catak and Balaban [4] used multiple

6



rounds of the MapReduce training to gradually make the approximation more
accurate until the globally optimal SVM is obtained, but this method cannot
train SVM with large number of support vectors and does not guarantee
convergence. Our study aims at achieving a scalable and efficient training
algorithm without approximation.

2.3. SVM training using GPUs

GPUs are a good platform for training SVMs because (i) GPUs have high
computation capability to carry out the expensive computation tasks (e.g.,
kernel value computation and search operation), and (ii) the communication
cost in a machine with GPUs is much lower compared with the communica-
tion cost among different machines through networks.

Catanzaro et al. [5] proposed a GPU-based SVM training algorithm for
classification using SMO. Carpenter [2] extended Catanzaro et al.’s algorithm
for handling SVM regression problems. Since Carpenter’s algorithm is the
state-of-the-art GPU-based training algorithm for the SVM regression, we
use the algorithm as our baseline algorithm which will be detailed in the
next section.

Other studies have different goals or settings from ours. For example, Cot-
ter et al. [8] proposed a GPU-tailored approach to train SVMs for classifica-
tion using a clustering technique. Their approach is designed for datasets that
are compressible and can be stored entirely in the GPU memory. Athana-
sopoulos et al. [1] used the GPU to precompute the kernel matrix to improve
the efficiency of the SVM cross-validation. Their algorithm can be improved
in the following two aspects: (i) the level of parallelism is low, since only
the kernel value computation is parallelized; (ii) it is not scalable to large
datasets due to the assumption that the whole kernel matrix can be stored in
the CPU memory. Codreanu et al. [7] developed a GPU-based SVM training
algorithm that requires holding the training dataset in the GPU memory
and uses approximation. In this article, we are interested in improving the
efficiency and scalability of the SVM training for regression without approx-
imation.

2.4. Kernel value caching

In the training, the same kernel values may be used in different iterations,
so we may cache some kernel values and avoid reading them from the CPU
memory or the SSD to the GPU memory. Popular SVM libraries such as
SVMlight [16] and LibSVM adopt the Least Recently Used (LRU) replacement
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strategy for caching kernel values between different iterations. Our later
analysis shows that LRU is not efficient for the training because it does not
match the kernel values’ access pattern. Caching strategy proposed by Yang
et al. [35] replaces the kernel values of the data points with weights of 0 in
the current iteration. This replacement strategy, however, requires a linear
search to find the data point whose weight equals to 0, which is even lesser
efficient than LRU.

3. Preliminaries

In this section, we first describe the SVM regression problem and provide
an overview of hardware characteristics of SSDs and GPUs. Then, we present
the details of a GPU-based parallel reduction process which is an important
operation in the GPU-based training algorithm. Finally, we discuss the state-
of-the-art GPU-based training algorithm for the SVM regression.

3.1. SVM regression

Given a set X of training data points, X = {x|xi ∈ Rd, i = 1, ..., n},
where n denotes the dataset cardinality and d denotes the data dimension-
ality. Each training data point is associated with a target value z ∈ R. The
SVM regression is a function estimation process that finds an optimal func-
tion g(x) which minimizes the difference of the target value of each training
data point x′ and the function value g(x′). Meanwhile, the function g(x)
is as smooth as possible for achieving high accuracy in predicting unseen
data. The training process of the SVM regression is equivalent to solving the
following Quadratic Programming (QP) problem [22].

max
α

F (α) =
2n∑

i=1

siαi −
1

2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ {1, ..., 2n},
2n∑

i=1

yiαi = 0

(1)

here F (α) is the objective function, and α = 〈α1, α2, ..., α2n〉 is a weight
vector for the training data points. The value αi denotes the contribution of
a training data point xt to the estimated function, where t = i if i ≤ n, oth-
erwise t = i−n. C is a penalty parameter which trades the generality for the
accuracy on the training set X . Q is a positive semi-definite matrix, where
Q = [Qij ], Qij = yiyjK(xi, xj) and K(xi, xj) is a kernel value computed from
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a kernel function (e.g., Gaussian kernel, K(xi, xj) = exp{−γ||xi − xj||2}).
Here, {

yi = +1, si = ε− zi if i ≤ n
yi = −1, si = ε + zi if n < i ≤ 2n

and ε is the error tolerant parameter.
The QP problem can be considered as implicitly extending n training data

points with target values in X to 2n training data points with ±1 labels. All
the kernel values together form a 2n× 2n matrix shown as follows.

K(x1, x1) K(x1, x2) . . . K(x1, x2n)

K(x2, x1) K(x2, x2) . . . K(x2, x2n)

...
...

...
...

K(xi, x1) K(xi, x2) . . . K(xi, x2n)

...
...

...
...

K(x2n, x1) K(x2n, x2) . . . K(x2n, x2n)



































After the training, we obtain the regression function:

g(x) =
2n∑

i=1

αiyiK(xi, x) + b (2)

where b denotes a constant (called bias) that is obtained from the solution
of the QP problem.

3.1.1. The SMO algorithm

The SVM training is to find a weight vector α that maximizes the objec-
tive function F (α) in the QP problem. There are many solvers for the SVM
training problem. Here, we focus on one of the most popular SVM training
algorithms, the Sequential Minimal Optimization (SMO) algorithm, with the
second order heuristic on choosing two training data points in each training
iteration [10]. The key idea in the SMO algorithm is to repeatedly update
the weight vector by the following three steps until convergence.

Step 1: To find the two training data points xu and xl that violate the
Karush-Kuhn-Tucker conditions maximally, the elements in the optimality
indicator vector f = 〈f1, f2, ..., f2n〉 is divided into three subsets:
P+1 = {fi : (αi = 0 ∧ yi = +1) ∨ (αi = C ∧ yi = −1)}
P0 = {fi : 0 < αi < C}
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P−1 = {fi : (αi = 0 ∧ yi = −1) ∨ (αi = C ∧ yi = +1)}
An optimality indicator fi is computed using:

fi =
2n∑

j=1

αjyjK(xi, xj) + si

Let Pup = P+1 ∪ P0 and Plow = P0 ∪ P−1. It has been proven [24] that
the indexes of xu and xl, denoted by u and l respectively, can be computed
as follows.

u = argmin
i
{fi|fi ∈ Pup} (3)

l = argmax
i
{
(fu − fi)

2

ηi
|fu < fi, fi ∈ Plow} (4)

where, fu and fl denote the optimality indicators of xu and xl, respectively,
and ηi = K(xu, xu) + K(xi, xi) − 2K(xu, xi). We call fu and fl the two
extreme indicators.

Step 2: The weights of xu and xl, denoted by αu and αl, are updated
using the following formulas.

α′
l = αl +

yl(fu − fl)

η
(5)

α′
u = αu + ylyu(αl − α′

l) (6)

where, η = K(xu, xu) + K(xl, xl) − 2K(xu, xl). To guarantee the update
is valid, when α′

u or α′
l exceeds the domain of [0, C], α′

u and α′
l are adjusted

into the domain. Specifically, if α′
u (or α′

l) is smaller than 0, we set α′
u (or α′

l)
to 0 and adjust α′

l (or α′
u) to ensure the condition

∑2n
i=1 yiαi = 0 is satisfied;

if α′
u (or α′

l) is larger than C, we set α′
u (or α′

l) to C and adjust α′
l (or α′

u) to
ensure the condition

∑2n
i=1 yiαi = 0 is satisfied.

Step 3: All the optimality indicators are updated. The optimality indi-
cator fi of xi is updated to the new value f ′

i using the following formula:

f ′
i = fi + (α′

u − αu)yuK(xu, xi) + (α′
l − αl)ylK(xl, xi) (7)

The SMO algorithm repeats the above steps until convergence, i.e., fu ≥
fmax where,

fmax = max{fi|fi ∈ Plow} (8)

Algorithm 1 summarizes the training process of SMO. In Algorithm 1, Ku

and Kl correspond to the uth and the lth rows of the kernel matrix, respec-
tively.
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Algorithm 1: The SMO algorithm for SVM regression
Input: A training set with 2n data points
Output: An optimal weight vector α

1 for i← 1 to 2n do /* initialize α and f */

2 αi ← 0, fi ← yi ∙ si

3 repeat
4 search for fu and find u /* Equation 3 */

5 compute kernel values Ku

6 search for fl and find l /* Equation 4 */

7 compute kernel values Kl

8 update αu and αl /* Equations 5 and 6 */

9 update f /* Equation 7 */

10 search for fmax /* Equation 8 */

11 until fu < fmax;

3.2. SSDs and GPUs

The solid state drive (SSD) is an emerging high-performance storage de-
vice. The major difference between the SSD and the hard disk drive (HDD)
is that the SSD has no moving mechanical components. The random access
and sequential access of the SSD are typically more than 10 times and 3 times
faster than the HDD [36], respectively. Another feature of the SSD is that
its write speed is usually slower than its read speed. In addition, the SSD
consists of a number of blocks, each of which is further divided into pages.
Different blocks can be read simultaneously, which significantly accelerates
the read speed. For example, 20 pages can be read in parallel on the Intel
X25M SSD [34]. Other types of NVRAM [19] are not as widely available as
SSDs, and also not as large as SSDs. Therefore, we consider main memory
extended by SSDs in this article, such that our algorithms can be easier to
be used by others and also can handle bigger datasets.

The Graphics Processing Unit (GPU) has played an important role in
personal computers for image rendering tasks. In recent years, as the GPU
has become more programmable, many general purpose computing applica-
tions [31, 32, 29] have benefited from its high memory bandwidth and high
parallel computation capability. Different types of memories have very dif-
ferent access latencies. For example, accessing shared memory is about 7
times faster compared with accessing global memory, while accessing shared
memory is about 6 times slower than the registers [30]. The size of the
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shared memory is much smaller compared with the size of the global mem-
ory on a GPU (typically, KB vs MB or GB). Therefore, making efficient use
of the shared memory has a significant impact on the performance of GPU-
based algorithms. Additionally, the GPU has many cores which have greater
potential to enhance the speed of algorithms. For example, a commodity
GPU (e.g., GTX 460) which has hundreds of cores allows thousands of light
weight threads to execute simultaneously; a high-end GPU (e.g., GTX 780)
which has over a thousand cores can run even more threads. Threads run-
ning on the GPU cores are organized in a hierarchically grouped manner. In
the NVIDIA Compute Unified Device Architecture (CUDA) [23], the GPU
threads are grouped into blocks which further form a grid. In a block, threads
are executed in groups of 32 parallel threads called warps. A warp executes
one common instruction at a time, so the best efficiency is achieved when all
32 threads of a warp are on the same execution path. If threads of a warp
diverge to different paths, the warp serially executes each branch path. A
warp diverging to different paths is called branch divergence which degrades
the performance of GPU-based algorithms.

3.3. The standard search algorithm

The standard search algorithm (denoted by Loose Search) has wide use
in finding the minimum/maximum value from an array. At each round of
the reduction, a GPU thread compares two values and discards the larger
(smaller) one to find the minimum (maximum) value. The reduction contin-
ues until only one value remains, which is the minimum (maximum) value.

Figure 1a shows the process of finding the minimum value from an array
which contains 8 elements, where circles represent GPU threads and rect-
angles represent elements in the shared memory of the GPU. At the first
round, threads 0 to 3 are active and 4 to 7 are idle. Each active thread reads
two values, compares them and writes the smaller one back to the shared
memory. Then the number of active threads reduces by half, and the active
threads continue the reduction process until only one active thread left which
obtains the minimum value.

3.4. The state-of-the-art GPU-based algorithm

As discussed in Section 2, Carpenter’s algorithm [2] is the state-of-the-art
GPU-based training algorithm for the SVM regression using any kernel. We
refer to it as “GSVR” and use it as our baseline algorithm in the experimental
study. Please note that GSVR is a GPU-based SMO implementation. The
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Figure 1: Two GPU-based search algorithms

main idea of GSVR is to use GPUs to improve two expensive operations, the
kernel value computation and the search for two extreme optimality indica-
tors, which are described as follows.

Obtaining the kernel values : In each training iteration, two rows of the
kernel matrix—Ku = 〈K(xu, x1), K(xu, x2), ..., K(xu, x2n)〉 and Kl =
〈K(xl, x1), K(xl, x2), ..., K(xl, x2n)〉—are computed on-the-fly. This com-
putation requires holding the whole training dataset in the GPU memory.
Furthermore, the same row of kernel matrix may be used for multiple times
during the training, and hence computing the rows on-the-fly may result in a
large number of repeated computations. Although GSVR attempts to cache
some kernel values in the GPU memory using LRU to mitigate the repeated
computations, the LRU replacement strategy is ill-suited to the SVM training
as we will show in the next section.

Search for extreme optimality indicators : GSVR searches the whole op-
timality indicator vector f to find the extreme optimality indicators (i.e., to
find u, l and fmax) using Loose Search (shown in Figure 1a). This is inefficient
because it has large search space which causes the following problem. As not
all the elements5 in f can be the candidates of fu, fl or fmax, GSVR has to

5Without confusion, we use “an element” and “an optimality indicator” in the opti-
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identify and mark the non-candidate elements during the search. This results
in the following problems: (i) a large number of accesses to the GPU global
memory to read the values of y and α to identify non-candidate elements;
(ii) branch divergence in identifying candidate and non-candidate elements
and (iii) using extra shared memory to store non-candidate elements during
the search process.

Let us consider an example shown in Figure 2. There are ten elements
in f (in Figure 2a), where each element is contained inside the solid line
rectangle. The dashed lines indicate which subset an optimality indicator
belongs to. An element appearing in the top, middle or bottom part of
a rectangle indicates that the element belongs to P+1, P0 or P−1. In this
example, P+1 = {8, 10, 5, 2}, P0 = {3, 9}, P−1 = {7, 1, 6, 4}. To find fu,
GSVR sets all the elements in P−1 to +∞ (cf. Figure 2b) and then uses
Loose Search to obtain the minimum value. Similarly, to find fmax in f ,
GSVR sets all the elements in P+1 to −∞ (cf. Figure 2c) and then uses
Loose Search to obtain the maximum value.

Loose Search for finding extreme optimality indicators is not efficient
because: (i) checking whether an optimality indicator fi is a candidate of fu,
fl or fmax results in branch divergence among GPU threads and also requires
accesses to the high-latency GPU global memory for obtaining the values
of yi and αi; (ii) the shared memory stores +∞ or −∞ to represent non-
candidate elements, consuming more shared memory. To summarize, GSVR

mality indicator vector interchangeably
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has three major drawbacks.

• Drawback 1: GSVR has many repeated computations and requires
holding the whole dataset in the GPU memory during the training. As
a result, it cannot process datasets larger than the GPU memory.

• Drawback 2: GSVR uses a general purpose caching strategy not ex-
ploiting kernel values’ access pattern.

• Drawback 3: GSVR uses Loose Search which searches a space more
than necessary and results in a large number of accesses to the GPU
global memory, branch divergence among GPU threads and consuming
more shared memory.

4. Our solution

In this section, we elaborate our scalable and efficient solution to the SVM
regression. To achieve high scalability and efficiency, we precompute the ker-
nel matrix to avoid repeated kernel value computations and avoid holding the
whole training dataset in the GPU memory during the training. To further
improve the efficiency, we organize the optimality indicator vector in a way
that a consecutive part of the vector only contains all the candidates of fu,
fl or fmax, such that the search does not need to identify non-candidates and
hence has a tighter search space. We call our solution Svm regressIon usinG
Modern hAreware (SIGMA). Figure 3 shows the overview of SIGMA. As we
see from the figure, SIGMA mainly consists of (i) precomputing and storing
the kernel matrix (shown in the left part of the figure), and (ii) obtaining
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kernel values and search extreme optimality indicators in the training (shown
in the right part of the figure).

4.1. Precomputing, storing & obtaining kernel values

Here, we explain the properties of the kernel matrix in the SVM regres-
sion, and the details of precomputing the kernel matrix, storing the kernel
matrix to the SSD and obtaining a row of the kernel matrix.

4.1.1. A compact kernel matrix for the SVM regression

As we have shown in Section 3.1, the whole kernel matrix in the SVM
regression is a 2n × 2n matrix and the n training data points are implicitly
doubled in the SMO algorithm. Hence, the 2n × 2n kernel matrix can be
viewed as a matrix that has four identical blocks. The following matrix gives
an overview of the 2n× 2n matrix.













K(x1,x1) ∙∙∙ K(x1,xn)
... ... ...

K(xn,x1) ∙∙∙ K(xn,xn)

K(x1,x1) ∙∙∙ K(x1,xn)
... ... ...

K(xn,x1) ∙∙∙ K(xn,xn)

K(x1,x1) ∙∙∙ K(x1,xn)
... ... ...

K(xn,x1) ∙∙∙ K(xn,xn)

K(x1,x1) ∙∙∙ K(x1,xn)
... ... ...

K(xn,x1) ∙∙∙ K(xn,xn)













To compute and store the 2n × 2n kernel matrix, we only need to compute
and store an n× n matrix. Therefore, we only need to compute and store a
quarter of the kernel matrix to represent the whole kernel matrix. The main
operation in precomputing the kernel matrix is essentially matrix multipli-
cation [33]. Hence, the highly optimized cublasSgemm procedure for matrix
multiplication in the CUDA library [9] can be used for the kernel matrix
precomputation.

We also notice that the n×n matrix is symmetric. Technically speaking,
we can further compress the n×n matrix, and store an upper triangular ma-
trix to save more space. However, we choose to store an n×n matrix for the
following two reasons. First, recovering a row of the n × n matrix from the
upper triangular matrix requires more read operations to SSDs; those read
operations to recover the row is difficult to benefit from the multi-channel
functionality of SSDs (cf. Section 3.2). Second, the recovering process in-
troduces much implementation complexity to the algorithm. To make use of
the multi-channel functionality and reduce the implementation complexity
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of the algorithm, we store the n × n matrix to represent the whole kernel
matrix.

4.1.2. Precomputing the kernel matrix

To avoid holding the whole training dataset and avoid repeated kernel
value computations, we precompute the kernel matrix for all the training
data points using the GPU. If the training dataset is too large to be held in
the GPU memory, we partition the dataset into subsets and compute subma-
trices using the subsets to obtain the whole kernel matrix. As we discussed in
Section 3.1, the training data points are used as the input to compute kernel
values and are not used for other purposes during the training. Therefore,
we do not need to hold it in the GPU memory after the kernel matrix pre-
computation, and hence SIGMA can handle datasets that are much larger
than the size of the GPU memory.

4.1.3. Storing the precomputed kernel matrix

The precomputed kernel matrix is stored row after row sequentially in the
CPU memory extended by the SSD. When we need to use the kernel values
in the training, we simply read the needed ones from the CPU memory or
the SSD. Thus, we avoid repeated computation of the kernel values. Note
that in each iteration of the training, two rows (i.e., the uth and the lth rows
in the kernel matrix) are needed according to Equation 7.

To enable fast reading kernel values from the precomputed kernel matrix,
we use the following two techniques. First, the portion of the precomputed
kernel matrix stored in the CPU memory can be directly read by the GPU
using a technique called “Zero Copy” [23]. Zero Copy is a hardware technique
that allows the GPU to use the CPU memory as if the CPU memory was
the GPU memory. This way helps reduce the time of data transfer between
the CPU and the GPU.

Second, we store the remaining portion of the precomputed kernel matrix
to the SSD in a way that the kernel values can be read in parallel to make
use of SSDs’ multi-channel feature. Specifically, we divide a row of the kernel
matrix into partitions, such that each partition can be stored in an SSD page.
The partitions are stored to a number of SSD pages in different SSD blocks,
such that different partitions of the row can be read from the SSD blocks
simultaneously.
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4.1.4. Obtaining kernel values

1) Obtaining a row from the CPU memory or the SSD

During the training, each training iteration requires two rows from the
kernel matrix. As we have precomputed the kernel matrix, we just need to
read two rows from it. When the needed rows are in the CPU memory, the
GPU directly reads the kernel values. If the needed rows are in the SSD,
we first read the kernel values from the SSD in parallel and then pass them
together to the GPU.

We call the process of reading kernel values from the SSD “Parallel Kernel
Value Read” which works as follows. Similar to the process of storing the
kernel matrix, initially the Parallel Kernel Value Read algorithm calculates
the number of SSD pages to be read for obtaining a row of the kernel matrix.
Then based on the index of the row, we can identify a set of SSD page indexes.
After that, we create a number of CPU threads each of which is assigned to
read a number of SSD pages that contain a partition of the row. Lastly, the
read results are put together and transferred to the GPU memory.

Addressing the scalability issue of GSVR: As discussed above, obtaining
the needed kernel values does not require any kernel value computation.
Hence, our algorithm avoids repeated kernel value computations and does not
need to hold the whole training dataset during the training. Consequently,
we overcome Drawback 1 of GSVR. This optimization is extremely
effective in large datasets, especially datasets of very high dimensionality.

As each training iteration only requires two rows (2n kernel values) of
the kernel matrix to be held in the GPU memory, the space complexity of
SIGMA is O(n) in terms of the GPU memory usage. Note that the space
complexity is irrelevant to the data dimensionality. This is an advantage of
our method since the big datasets we have these days tend to have thousands
to millions of dimensions. As a comparison with GSVR which has a space
complexity of O(nd), we show the largest datasets that GSVR and SIGMA
can handle in Table 1, where the size of datasets is measured by the number
of instances. Here we assume that GSVR uses a high-end GPU, GTX 780,
which has 3GB GPU memory and SIGMA uses a 4TB SSD. We assume 4
bytes to store a value. As we can see from the table, SIGMA can handle much
larger datasets than GSVR, especially when the dimensionality is high. The
reason for SIGMA’s high scalability is that we shift the space constraint from
the size of the GPU memory to the size of the SSD which is much larger.
Note that we can install more SSDs to a computer to handle even larger
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Table 1: Scalability comparison

dimensionality
size of datasets that can be handled
SIGMA GSVR

1,000 1,000,000 805,300

10,000 1,000,000 80,530

100,000 1,000,000 8,053

1,000,000 1,000,000 805

datasets while the GPU memory is not extendable.

2) Obtaining a row from the cache

The same row of kernel values is often used multiple times during the
training and may be cached for reuse. Previous studies have simply used
LRU for kernel value caching. As we analyzed in our conference paper [33],
the kernel value’s access pattern, i.e., the quasi-round-robin access, is similar
to sequentially scan all the kernel values for multiple times. For such access
pattern, no caching strategy will increase the probability of hits compared
with caching a fixed part of the kernel values. LRU is ill-suited to this access
pattern since LRU caches recently used kernel values, which are actually the
least possible ones to be accessed again in the near future. Since two rows of
the kernel values in the kernel matrix are used together in each iteration as
discussed in Section 4.1, we have used a simple caching strategy of replacing
the row with the minimum row index in the kernel matrix when the cache
is full. We call our caching replacement strategy LAT since our strategy
replaces the row with longest access time. LAT effectively caches the last
part of the kernel matrix. It guarantees that a fixed part of the kernel
matrix is cached and reused. As mentioned in Section 4.1 we store the rows
with large row indexes in the kernel matrix in the SSD, so LAT favors to
cache the kernel values that are stored in the SSD. Compared with caching
kernel values stored in the CPU memory, caching kernel values stored in the
SSD saves more data transfer time. As our caching strategy matches the
kernel values’ access pattern and well-suited to our storage framework, we
overcome Drawback 2 of GSVR.

4.2. Search for extreme optimality indicators

In addition to obtaining the needed kernel values, the other expensive
operation in each training iteration is the search for extreme optimality indi-
cators. We first propose an improved aLoose Search technique, which requires
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less shared memory and fewer accesses to shared memory and is used in our
MASCOT scheme [33]. Then we elaborate our newly proposed Tight Search
technique.

4.2.1. An improved Loose Search technique

In Step 1 of SMO, the search for two extreme optimality indicators is
essentially the minimal/maximal value search to obtain fu, fl and fmax. We
use the following two techniques for improving the efficiency of the search.

Reducing the shared memory consumption. When loading values from the
global memory to the shared memory at the beginning of the search, we let
each thread load a number a of elements instead of one. Each thread com-
putes and maintains its local minimal (maximal) value in one of its registers.
Then each thread writes its local minimal (maximal) value to the shared
memory. Compared with Loose Search which requires storing n values in the
shared memory, this method only needs to store dn/ae values.

Reducing accesses to the shared memory. After the values are loaded
from the global memory to the shared memory, the GPU reduction opera-
tion starts. As we discussed in Section 3.3, in each round of the reduction, an
active GPU thread requires reading two values from the shared memory and
writing back the smaller (larger) value to the shared memory. We can reduce
read and write operations to the shared memory using registers which are
about 6 times faster [30] than the shared memory. Each thread maintains its
local minimal (maximal) value in a register in each round of the reduction. In
the next round, a thread only needs to read one value from the shared mem-
ory, compare the value with its local minimal (maximal) value and write the
smaller value back to the register as its new local minimal (maximal) value.
Thus, the number of read operations to the shared memory is reduced by
half. The write operation to the shared memory only happens when a thread
becomes inactive. Inactive threads write their local minimal (maximal) val-
ues back to the shared memory so that active threads in the next round can
read the value to search the global minimal (maximal) value. Active threads
do not need to perform the write operations and hence the number of write
operations is significantly reduced.

We call this search technique “Advanced Loose Search” and denote it by
aLoose Search. Figure 1b gives an overview of aLoose Search. The number
of registers used in our aLoose Search algorithm is exactly the same as that
in Loose Search. In Loose Search for the minimum value (cf. Figure 1a),
each active thread needs to use two registers (for temporarily storing the
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Figure 4: Organized optimality indicator vector

two values read from the shared memory), and writes the smaller value back
to the shared memory. In aLoose Search, each active thread also uses two
registers, one for storing the newly read value from the shared memory and
one for storing the minimum value discovered in the previous round. Then
the smaller one among the two values is written back to the register which
stores the minimum value discovered. We conduct experiments in Section 5
to investigate the efficiency of aLoose Search.

4.2.2. The Tight Search technique

Our goal here is to reduce the number of accesses to the GPU global
memory, avoid branch divergence among the GPU threads, and search as few
elements as possible. These factors are vital to the efficiency of the search
algorithm. Our key idea is to organize the optimality indicator vector in a
way that a consecutive part of the vector only contains all the candidates of
fu, fl or fmax, such that the search does not need to identify non-candidates
and hence has a tighter search space.

In what follows, we explain the three components of our search algo-
rithm: organizing the optimality indicator vector, searching for the extreme
indicators, and maintaining the optimality indicator vector.

1) Organizing the optimality indicator vector

According to the definitions of fu, fl and fmax, the search for fu is to find
the minimum optimality indicator in Pup (cf. Equation 3), and the search
for fl or fmax is to find the maximum value using the optimality indicators
in Plow (cf. Equation 4 and 8).

The standard way to search the optimality indicator (e.g., fu) of interest
is to search from all the elements (i.e., Pup∪Plow) in the optimality indicator
vector f to find the optimality indicator of interest. Figure 2 gives an example
of using the standard way to find fu and fmax.

Instead of searching all the elements (i.e., Pup ∪ Plow) in f to find the
optimality indicators of interest, we organize f in a way that the search only
needs to consider either Pup or Plow. More specifically, since Pup = P+1 ∪P0
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and Plow = P0 ∪ P−1, we have Pup ∩ Plow = P0. This property can be
exploited to organize the elements of f in three parts: P0 in the middle
part of an array, P+1 at the right side of P0, and P−1 at the left side of P0.
Figure 4 gives an example of organizing f into three parts. We refer to the
organized optimality indicator vector as ov.

Note that ov should be kept in the GPU global memory because of two
reasons. First, the search for an extreme optimality indicator is to find an
optimality indicator with the globally minimum or maximum value, which
requires the GPU threads to be aware of all the optimality indicators. Second,
the optimality indicators are frequently accessed, since each training iteration
(e.g., Steps 1 and 3 in SMO) requires accesses to all the optimality indicators.

2) Searching for the extreme indicators

When we have the organized optimality indicator vector ov (i.e., orga-
nizing the optimality indicator vector f into three parts), we do not need to
search in the whole optimality indicator vector f for fu, fl and fmax. Instead,
the search for fu is to find the minimum optimality indicator in ovup (i.e.,
Pup); the search for fl and fmax is to find the maximum value using ovlo (i.e.,
Plow). Note that ovup equals to f \P−1, and ovlo equals to f \P+1. So, the
search space for fu, fl and fmax is reduced from f to ovup or ovlo.

This search for fu, fl and fmax can be done by our aLoose Search technique
and we call this search algorithm “Tight Search”, since it has a tighter search
space compared with Loose Search and aLoose Search.

3) Maintaining the optimality indicator vector

According to the definitions of P−1, P0 and P+1 (cf. Section 3.1.1), which
subset an optimality indicator fi belongs to is determined by the label yi and
the weight αi of the training data point. The labels of the training data
points are unchangeable, while the weights may change during the training.
The change of weights potentially forces elements to move among P−1, P0

and P+1. Therefore, we need to move the elements to the correct subsets
such that ov maintains the property that ovup and ovlo correspond to Pup

and Plow, respectively. Since each training iteration only updates two weights
(i.e., αu and αl), there are at most two optimality indicators (i.e., fu and fl)
in ov which move from one subset to another. The element movement from
one subset to another requires accesses (probably not coalesced accesses [23])
to the high-latency GPU global memory, and hence the number of accesses to
the GPU global memory should be minimized. We know that the size of ov
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is equal to the number of the training data points and is a constant during
the training. The movement of the elements in the ov vector is an activity
inside the vector. Hence, maintaining ov can be considered as swapping
optimality indicators among P−1, P0 and P+1.

In what follows, we describe a frequently used operation (called swap
operation that swaps two elements in ov) to maintain ov’s property and
then present an efficient algorithm to maintain ov.

The swap operation: The swap operation swaps an element fi (e.g., fu)
with a boundary element of P−1, P0 or P+1, such that fi is moved to the
right position in ov. For instance, a training iteration forces fu, the element
6 in Figure 4, to move from P−1 to P0. This is equivalent to swapping 6
with 4 in P−1. Here, boundaries are represented by the bold vertical bars
in the figure. The updated ov vector is shown in Figure 5a. This update
requires one swap operation. In comparison, moving elements between P+1

and P−1 requires more swap operations. For instance, moving fl, element
10 in Figure 5a, from P+1 to P−1 requires moving element(s) of P0. This
is because P+1 shrinks while P−1 grows, which forces P0 to shift. In this
example, three elements (i.e., 6, 8 and 10) are moved, which requires two
swap operations in total. Figure 5b shows the updated ov.

Before we apply the swap operation, we need to compute the new po-
sitions of fu and fl. This preparation for the swap operation is not paral-
lelizable and is more suitable to be performed on the CPU. As we discussed
before, ov is stored in the GPU global memory. Hence, a swap operation
requires not only accesses to the high-latency GPU global memory but also
communication between the CPU and the GPU. Note that the swap oper-
ation happens in each training iteration. Therefore, the number of swap
operations has a significant effect on the efficiency of the training. In what
follows, we show how we may maintain ov by moving individual elements
and how we may maintain ov more efficiently through direct swapping of
elements.

Moving individual elements: In each training iteration, at most two ele-
ments, i.e., fu and fl , in ov are moved. One way to maintain ov is to move
the two elements separately, and we call this approach “Single Movement”.
Figure 6 shows all possible cases of moving an element from one subset to
another. In the figure, cases 1 to 4 can be handled by one swap operation
and cases 5 and 6 can be handled by two swap operations.

This approach is inefficient, because each iteration may force both fu and
fl to move and hence the number of swap operations is up to four. Next,
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Figure 5: Moving elements in ov
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(3)fu (4)fu

(5) fu (6)fl

Figure 6: Possible movements of an element

we explore the properties of the training to minimize the number of swap
operations.

Direct swapping: As both fu and fl may be moved in a training iteration,
considering both elements together may be more efficient than considering
them separately. Our key idea is to apply the swap operation directly (which
we call direct swapping) on fu and fl when direct swapping can apply. Fig-
ure 7 shows possible movements of two elements in ov. Direct swapping can
apply on fu and fl in cases 1 to 3 in Figure 7, and only one swap operation
is needed in these cases. Note that moving fu and fl separately requires
four swap operations for case 3, while direct swapping only needs one swap
operation which is much more efficient.

Below we prove that direct swapping can always apply to elements moving
between P+1 and P−1 (i.e., cases 5 and 6 in Figure 6).

Lemma 1. An element moving from P+1 to P−1 is a sufficient and necessary
condition for the other element moving from P−1 to P+1.
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Figure 7: Possible movements of two elements

Proof 1. To prove its sufficiency, from the constraint∑2n
i=1 yiαi = 0 in the QP problem, we can get the following equation yiαi +

yjαj = yiα
′
i + yjα

′
j. Without loss of generality, suppose an element fi moves

from P+1 to P−1. The value of αi changes from 0 to C if yi = +1, or changes
from C to 0 if yi = −1. Therefore, yiα

′
i − yiαi = yjαj − yjα

′
j = C. This

indicates that the value of yjαj decreases by C. Thus, the element fj must
move from P−1 to P+1. Similarly, we can prove the necessity.

When direct swapping does not apply, we move the two elements sepa-
rately. We can guarantee that the maintenance of ov can be done by at most
two swap operations. This is because: (i) when direct swapping can apply,
the maintenance can be done by one swap operation; (ii) when we need to
swap fu and fl separately, one swap operation for each element is enough.
The above lemma simplifies the maintenance process, as we do not need to
handle individual movement in cases 5 and 6.

4) Analysis of Tight Search

The Tight Search algorithm has the following two advantages over the
Loose Search algorithm. First, the search space for fu, fl and fmax is min-
imized, since only candidates (i.e., elements in ovup or ovlo) are taken into
consideration; no shared memory is used for storing non-candidates. Second,
there is no branch divergence, because Tight Search does not need to access
to y and α to check whether an element is a candidate of the extreme op-
timality or not. Note that whether an optimality indicator fi is in ovup or
ovlo is decided by the label yi and the weight αi according to the definition of
P+1, P0 and P−1 in Step 1 of SMO (cf. Section 3.1.1). Hence, we overcome
Drawback 3 of GSVR.
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Additionally, Tight Search is the key to achieve more benefits when the
number of support vectors is small. The reasoning is as follows. From the
definition of ovup and ovlo, we know that ovup equals to f \ P−1, and ovlo

equals to f \ P+1. According to the definition of P0 in Section 3.1.1, we
can find out that P0 only contains the optimality indicators of the support
vectors (i.e., the optimality indicators corresponding to α ∈ (0, C)) of the
currently found hyperplane. Similarly, we can find out that P+1 and P−1

contain the optimality indicators of the non-support vectors. P0 is contained
in both ovup and ovlo, while P+1 and P−1 are contained in either ovup or
ovlo. In each iteration of the training, ovup is searched once to find fu, and
ovlo is searched twice to find fl and fmax. So, P0 is searched three times, P+1

is searched once, and P−1 is searched twice. Therefore, the smaller the size
of P0, the more benefits our Tight Search algorithm has. More intuitively,
the conclusion here is that the larger the number of non-support vectors the
problem has, the more benefit our Tight Search algorithm has. We will study
the effectiveness of Tight Search by experiments in Section 5.

4.2.3. Difference of Tight Search and Loose Search

Tight Search and Loose Search may obtain a different optimality indicator
when two optimality indicators have the equal value. Suppose we want to find
the minimum value from elements in Pup = 〈8, 2, 10, 5, 2〉. Loose Search gives
the first “2”, while Tight Search may give the second “2” in Pup due to the
organization and maintenance of the optimality indicator vector. Note that
choosing a different optimality indicator in a training iteration only affects
the convergence rate, but has little effect on the final regression function.

4.3. Distributing tasks on GPUs and CPUs

During the training, some operations (e.g., search extreme indicators) can
be parallelized while others are not parallizable. Apart from using the GPU
to perform the parallizable operations, we have two techniques for making
efficient use of the CPU. First, we use the CPU to update the two weights
αu and αl according to Equations 5 and 6 (cf. Step 2 of SMO), since the
updates are not parallelizable. Second, we use the CPU to compute the two
unchanged terms, (α′

u − αu)yu and (α′
l − αl)yl, in each iteration. Then the

two terms are passed to the GPU, instead of computing them in every GPU
thread.
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Algorithm 2: The training algorithm in SIGMA
Input: A training set with 2n data points

the precomputed kernel matrix K
Output: An optimal weight vector α

1 d−1 ← 0, d+1 ← 2n ; /* boundaries in ov */

2 for i← 1 to 2n do /* initialize α and ov */

3 αi ← 0, fi ← yi ∙ si;
4 if yi = +1 then
5 ov[d+1]← fi, d+1 ← d+1 − 1;

6 else
7 ov[d−1]← fi, d−1 ← d−1 + 1;

8 repeat
9 u← argmin{ov[i] : d+1 < i ≤ 2n}, fu ← ov[u];

10 Ku ← ParallelRead(K, u)
11 search for l using Ku and {ov[i] : 1 ≤ i < d−1}
12 Kl ← ParallelRead(K, l)
13 update αu and αl /* Equations 5 and 6 */

14 Maintain(ov)
15 update ov using Ku, Kl /* Equation 7 */

16 fmax ← max{ov[i] : 1 ≤ i < d−1}
17 until fu < fmax;
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4.4. The full training algorithm

Our full training algorithm is outlined in Algorithm 2. First, the weight
vector and organized optimal indicator vector ov are initialized (lines 1 to
7). Then, the index of the first extreme optimality indicator, u, is found in
Pup, and the corresponding row Ku is obtained from the precomputed kernel
matrix K (lines 9 and 10). Inside the procedure “ParallelRead”, we check if
the needed row is in the cache; if a cache miss occurs, we update the cache
using the cache replacement strategy discussed in Section 4.1.4, and read the
row from the CPU memory or the SSD. Based on the row Ku, the index of
the second extreme optimality indicator, l, is found according to Equation 4,
and the corresponding row Kl is obtained from K (lines 11 and 12). Next,
the weights (i.e., αu and αl) of the two training data points with extreme
optimality indicators are updated (line 13) using Equations 5 and 6. After
the update on the weights, the two extreme optimality indicators fu and fl

may be moved from one subset to another and hence the maintenance process
for ov should be performed (line 14). After that, all the optimal indicators
in ov are updated using the updated αu and αl according to Equation 7 (line
15). Lastly, we search the maximal optimal indicator in Plow and check if
the optimal condition fu ≥ fmax is met (lines 16 and 17). The above process
is repeated until the optimal condition is met.

4.5. Discussion

SIGMA can easily scale to a number (denoted by m) of machines with
GPUs, since the kernel matrix precomputation and the training can be par-
allelized.

For the kernel matrix precomputation, we can decompose the whole kernel
matrix into sub-matrices, and each machine computes all the kernel values
of a sub-matrix independently.

The training can be parallelized as follows. We evenly divide the opti-
mality indicator vector f into m parts q1, q2, ..., qm where qi = 〈f(i−1)∙z+1,
f(i−1)∙z+2, ...fi∙z〉 and z is the number of the optimality indicators in each
part. The ith machine stores qi and organizes its own ovi using qi. For Step
1 (i.e., the search for minimum or maximum value), each machine obtains
its local extreme indicator and reports it to a “Master” machine. The Mas-
ter machine then can obtain the global extreme indicator. For Step 2 (i.e.,
improving the weights) which is not computationally expensive, the Master
machine calculates the updated weights α′

u and α′
l. For Step 3 (i.e., updating

f), the ith machine obtains the weights α′
u and α′

l from the Master machine
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Table 2: Datasets and kernel parameters

Dataset Cardinality Dim. C γ

Amazon 30,000 20,000 32 0.0625
CT-slices 53,500 386 64 0.25

E2006-tfidf 16,087 150,360 256 0.125
KDD-CUP’98 191,779 479 64 0.25

and independently updates qi according to Equation 7; the maintenance of
the ovi vector may occur depending on whether fu or fl is in qi. Further-
more, the ith machine only needs to store z columns—the (i ∙ z − z + 1)th

column to the i ∙ zth column—of the kernel matrix. This is because only the
(i ∙ z − z + 1)th to i ∙ zth kernel values of the uth row and the lth row are used
to update qi at each training iteration. As each machine only needs to store
z columns of the kernel matrix, SIGMA can handle problems with an even
larger kernel matrix using multiple machines with GPUs and SSDs.

5. Experimental study

In this section, we empirically evaluate the performance of our solution
SIGMA for the SVM regression. SIGMA and GSVR were implemented in
CUDA-C. We did not use any libraries except the libraries (e.g., cublasS-
gemm) provided by CUDA. The experiments were conducted on a desktop
computer running Linux with a quad-core Intel Xeon E5-2643 CPU, 32GB
main memory, a 240GB SSD and a GTX460 GPU with 768MB memory.
Following a common practice, we set the SSD block size and the SSD page
size to 512KB and 4KB, respectively, and the GPU block size to 128B. The
source code of SIGMA will be released to GitHub after this work is accepted
for publication.

We use four real world datasets from the UCI Machine Learning Reposi-
tory6 and the LibSVM site7. Specifically, the datasets are: (i) Amazon, which
contains an anony-mized sample of access provisioned within the Amazon
company and person business title serves as the target value of the regres-
sion; (ii) CT-slices, which contains features extracted from CT images, and
the relative location of the image on the axial axis serves as the target value;
(iii) E2006-tfidf, which contains features of corpus and tf-idf of unigrams,

6archive.ics.uci.edu/ml/datasets.html
7www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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and (iv) KDD-CUP’98, which is the dataset used for the KDD Cup 1998
Data Mining Tools Competition, and their first features serve as the target
values. We use the Gaussian kernel in our experiments, and the parameters
C and γ of the kernel are chosen using grid search [14]. Dataset details are
shown in Table 2.

We conducted experiments on the KDD-CUP’98 dataset using LibSVM
(i.e., the CPU-based training algorithm). LibSVM took over 50 hours which
is two orders of magnitude more time than SIGMA. As LibSVM is too slow
and uncompetitive with SIGMA, we do not compare it with SIGMA in exper-
iments using the whole datasets. We postpone the experiments on comparing
LibSVM with SIGMA until Section 5.2 when we study the overall efficiency of
different algorithms on sub-datasets which GSVR and LibSVM can handle.
As we discussed in Section 2, the MapReduce based SVM training algo-
rithms produce approximated results and/or can only handle some special
cases, and hence we will not compare them with our solution SIGMA either.
Therefore, we compare SIGMA with GSVR, the state-of-the-art training al-
gorithm. Because SIGMA does not need to hold the training data points
during the training, it uses the GPU memory to cache kernel values.

For the experimental results on the effectiveness of our caching strategy
and Parallel Kernel Value Read, and the efficiency comparison between the
CPU-based training algorithm and our GPU-based training algorithm, please
refer to our conference version of this article [33]. Here, we focus on showing
the experimental results on our newly designed Tight Search algorithm and
on the overall scalability and efficiency of SIGMA for the SVM regression.

5.1. Efficiency of Tight Search

We used the whole KDD-CUP’98 dataset to investigate the efficiency of
Tight Search. The experimental results on the other datasets are similar to
the results on KDD-CUP’98, and hence are omitted in this set of experi-
ments. To demonstrate the efficiency of Tight Search, we used Loose Search
and aLoose Search (i.e., advanced Loose Search) discussed in Section 4 as
our baselines. We created about 1,500 GPU threads to search fu (i.e., the
first extreme optimality indicator), and measured the total elapsed time in
searching for fu during the training. Figure 8a shows that Tight Search dra-
matically outperforms Loose Search by over 4 times, and aLoose Search by
over 3 times. This is because Tight Search minimizes the search space, re-
duces the number of global memory accesses, and avoids branch divergence
as discussed in Section 4. In our experiment, we noticed that the average
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Table 3: Datasets the algorithms can handle

Dataset GSVR
SIGMA

elapsed time read : comp

Amazon — 420 (sec) 0.39:1
CT-slices 2,731 (sec) 226 (sec) 0.53:1

E2006-tfidf — 1,789 (sec) 0.23:1
KDD-CUP’98 — 2,628 (sec) 1.60:1

length of Pup is about 69% of the length of ov, and the length of Plow is
about 62% of that of ov. This indicates the significance of the search space
reduction. We also noticed that the total elapsed time on the maintenance
of ov was 6.5 seconds. It is a small amount of time compared with the time
taken by the search operations. Note that not only the search for fu benefits
from the maintenance, but also the search for fl and fmax.

5.2. Overall scalability and efficiency

Please note that the elapsed time of SIGMA reported here includes the
time of precomputing and storing kernel values, and the time of training.

Scalability: As can be seen from the second and the third columns of
Table 3, SIGMA can easily process all the four datasets with a reasonably
small amount of time, while GSVR can only process the CT-slices dataset
taking an order of magnitude more time than SIGMA and fails to process the
other three datasets. This is because GSVR assumes all the training data
points can be stored in the GPU memory, while SIGMA does not have such
constraints.

To examine the time required for the GPU kernel execution and the time
required for obtaining the precomputed kernel values, we measured the total
time for the GPU kernel execution during the training and measured the
total time of obtaining the precomputed kernel values during the training.
The results are provided in the last column of Table 3, where “read : comp”
denotes the ratio of the time required for obtaining the precomputed kernel
values and that for the GPU kernel execution. According to the results, the
time required for the GPU kernel execution is longer than that for obtain-
ing the precomputed kernel values in most of the datasets tested. For the
KDD-CUP’98 dataset, the time required for the GPU kernel execution is
comparable to that for obtaining the precomputed kernel values.

To demonstrate the scalability of SIGMA over the cardinality and dimen-
sionality, we constructed two groups of datasets from the Amazon dataset
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as follows. One group has datasets with dimensionality set to 5,000 and car-
dinality varying from 5,000 to 30,000. The second group has datasets with
cardinality set to 5,000 and dimensionality varying from 5,000 to 20,000. Fig-
ure 8b shows the results on the scalability in data dimensionality. SIGMA
can efficiently process datasets with high dimensions. In contrast, GSVR
fails to process the datasets with data dimensionality over 10,000, although
it can handle the datasets of smaller dimensionality with much more time
than SIGMA. On the scalability in dataset cardinality, Figure 8c shows the
results. As the dataset cardinality increases from 5,000 to 10,000, the elapsed
time of SIGMA slightly increases from 6 seconds to 20 seconds. In compari-
son, the elapsed time of GSVR grows dramatically from hundreds of seconds
to thousands of seconds. GSVR runs out of memory with datasets of larger
cardinality while SIGMA can handle them efficiently.

Efficiency: To accelerate LibSVM with our techniques, we implemented
a CPU version of our kernel value precomputation and computation reuse
techniques, and integrated the techniques to LibSVM. Note that even though
LibSVM has an interface for using precomputed kernel values, LibSVM does
not have functions for precomputation. To compare the efficiency of SIGMA
with GSVR and LibSVM with precomputation denoted by CSVR, we con-
structed three smaller datasets (both in terms of cardinality and dimensional-
ity) so that GSVR and CSVR can handle the four datasets without running
out of GPU memory or running out of our time limit. The details of the
subsets are as follows: (i) Amazon has 15,000 data points with 3,500 dimen-
sions, (ii) E2006-tfidf has 16,087 data points with 3,500 dimensions, and (iii)
KDD-CUP’98 has 50,000 data points with 479 dimensions. The CT-slices
dataset remains unchange as GSVR could process it.

Table 4 gives the elapsed time of GSVR and CSVR, and the total elapsed
time—including the time of precomputing the kernel matrix—of SIGMA. The
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Table 4: Efficiency comparison (sec)

Sub-dataset GSVR CSVR SIGMA
Speedup

GSVR CSVR

Amazon 1,077 2,201 27 39.9 81.5
CT-slices 2,731 4,341 226 12.1 19.2

E2006-tfidf 7,053 2,782 82 86.0 33.9
KDD-CUP’98 639 3,456 54 11.8 64.0

Table 5: Efficiency comparison using Tesla K40 (sec)

Sub-dataset GSVR SIGMA Speedup

Amazon 551 25 22
CT-slices 1,479 127 11.6

E2006-tfidf 3,488 81 43
KDD-CUP’98 336 32 10.5

elapsed time was measured in seconds. As we can see from the table, SIGMA
consistently outperforms GSVR and CSVR by an order of magnitude over
all the datasets tested.

To investigate the performance gain of our solution in more recent GPUs,
we conducted the experiments on overall efficiency using a Tesla K40 and the
results are shown in Table 5. As we can see from the results, SIGMA consis-
tently outperforms GSVR by one order of magnitude. These results demon-
strate that our solution is more favorable than GSVR for various GPUs. The
results of Table 4 and Table 5 indicate the effectiveness of our computation
reuse techniques and of Tight Search discussed in Section 4. Please note
that the improvement on kernel value computation contributes more than
Tight Search to the speedup, because the kernel value computation is time
complexity of O(nd) while the time complexity of the search is O(n).

5.3. Training result comparison

To validate that the final training results of GSVR and SIGMA are the
same, we measured two more indicators in our experiments: the number of
training iterations and the value of the bias b of Equation 2. Table 6 shows
the number of training iterations and the difference of the bias of GSVR and
SIGMA on each dataset tested. The number of training iterations is slightly
different (i.e., SIGMA has less than 3% fewer or more training iterations than
GSVR). The slight difference is because two extreme optimality indicators
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Table 6: Training Result Comparison between GSVR and SIGMA

Dataset
# training iterations

diff. of bias
GSVR SIGMA

Amazon (subset) 106,847 107,508 0
CT-slices 424,681 411,105 0.001

E2006-tfidf (subset) 401,356 402,453 0
KDD-CUP’98 (subset) 82,094 80,414 0

chosen by GSVR and SIGMA may be different in a training iteration as
discussed in Section 4.2.3. Please note that the difference on the chosen of
two optimality indicators only affects the convergence rate. As can be seen
from the table, the bias values are the same in the three datasets, and are
almost the same (i.e., the difference is only 0.001) in the CT-slices dataset. In
summary, SIGMA is scalable and is more efficient than GSVR, and SIGMA
produces the same (or almost the same) result as GSVR.

6. Conclusion

In this article, we proposed a highly scalable and efficient solution (called
SIGMA) for the SVM regression, which significantly outperforms the state-
of-the-art GPU-based training algorithm. Our key ideas are as follows. (i)
To avoid the repeated kernel value computations and avoid holding the whole
training dataset in the GPU memory, we precomputed the kernel values and
stored them in the CPU memory extended by the SSD. (ii) To obtain kernel
values from the CPU memory or the SSD more efficiently, we proposed a
caching strategy and a Parallel Kernel Value Read technique; to improve
the search operation, we designed a highly efficient algorithm called Tight
Search. Our experimental results show that SIGMA is efficient and scalable
to very large datasets even with very high dimensionality (e.g., E2006-tfidf
with 150,360 dimensions) which the state-of-the-art GPU-based algorithm
simply could not handle. For datasets of size which the state-of-the-art GPU-
based algorithm can handle, SIGMA consistently outperforms the algorithm
by an order of magnitude.
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