Skip to main content
Log in

Continuous monitoring of range spatial keyword query over moving objects

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient solution for processing continuous range spatial keyword queries over moving spatio-textual objects (namely, CRSK-mo queries). Major challenges in efficient processing of CRSK-mo queries are as follows: (i) the query range is determined based on both spatial proximity and textual similarity; thus a straightforward spatial proximity based pruning of the search space is not applicable as any object far from a query location with a high textual similarity score can still be the answer (and vice versa), (ii) frequent location updates may invalidate a query result, and thus require frequent re-computing of the result set for any object updates. To address these challenges, the key idea of our approach is to exploit the spatial and textual upper bounds between queries and objects to form safe zones (at the client-side) and buffer regions (at the server-side), and then use these bounds to quickly prune objects and queries through smart in-memory data structures. We conduct extensive experiments with a synthetic dataset that verify the effectiveness and efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)

    Article  MATH  Google Scholar 

  2. Cai, Y., Hua, K.A., Cao, G., Xu, T.: Real-time processing of range-monitoring queries in heterogeneous mobile databases. IEEE Trans. Mob. Comput. 5(7), 931–942 (2006)

    Article  Google Scholar 

  3. Cary, A., Wolfson, O., Rishe, N.: Efficient and scalable method for processing top-k spatial boolean queries. In: International Conference on Scientific and Statistical Database Management, pp. 87–95. Springer (2010)

  4. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. Proc. VLDB Endow. 2(1), 1138–1149 (2009)

    Article  Google Scholar 

  5. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. PVLDB 2(1), 1138–1149 (2009) [http://www.vldb.org/pvldb/2/vldb09-720.pdf]

    Google Scholar 

  6. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011)

    Article  Google Scholar 

  7. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011). doi:10.1109/TKDE.2010.246

    Article  Google Scholar 

  8. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors queries in euclidean space and in spatial networks. VLDB J. 21(1), 69–95 (2012). doi:10.1007/s00778-011-0235-9

    Article  Google Scholar 

  9. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: A safe zone based approach for monitoring moving skyline queries. In: Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, pp. 275–286. Genoa (2013). doi:10.1145/2452376.2452409

  10. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228. VLDB Endowment (2013)

  11. Chen, L., Cong, G., Cao, X., Tan, K.L.: Temporal spatial-keyword top-k publish/subscribe. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 255–266. IEEE (2015)

  12. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)

    Article  Google Scholar 

  13. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008, pp. 656–665. IEEE (2008)

  14. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on moving objects in a mobile system. In: Advances in Database Technology-EDBT 2004, pp. 67–87. Springer (2004)

  15. Guo, L., Chen, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Elaps: An efficient location-aware pub/sub system. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1504–1507. IEEE (2015)

  16. Guo, L., Shao, J., Aung, H.H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road networks. GeoInformatica 19(1), 29–60 (2015)

    Article  Google Scholar 

  17. Guo, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Location-aware pub/sub system: When continuous moving queries meet dynamic event streams. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 843–857. ACM (2015)

  18. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving objects. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 479–490. ACM (2005)

  19. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.L.: A location-aware publish/subscribe framework for parameterized spatio-textual subscriptions. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 711–722. IEEE (2015)

  20. Huang, W., Li, G., Tan, K.L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp. 932–941. ACM (2012)

  21. Jung, H., Kim, Y.S., Chung, Y.D.: Qr-tree: An efficient and scalable method for evaluation of continuous range queries. Inform. Sci. 274, 156–176 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 802–810. ACM (2013)

  23. Li, Z., Lee, K.C., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: An efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23 (4), 585–599 (2011)

    Article  Google Scholar 

  24. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pp. 623–634. ACM (2004)

  25. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 634–645. ACM (2005)

  26. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10), 1124–1140 (2002)

    Article  MathSciNet  Google Scholar 

  27. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: Advances in Spatial and Temporal Databases, pp. 205–222. Springer (2011)

  28. Ṡaltenis, S.: Indexing the positions of continuously moving objects. In: Encyclopedia of GIS, pp. 538–543. Springer (2008)

  29. Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 790–801. VLDB Endowment (2003)

  30. Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Ap-tree: Efficiently support continuous spatial-keyword queries over stream. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 1107–1118. IEEE (2015)

  31. Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 541–552. IEEE (2011)

  32. Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24(10), 1889–1903 (2012)

    Article  Google Scholar 

  33. Wu, K.L., Chen, S.K., Yu, P.S.: On incremental processing of continual range queries for location-aware services and applications. In: The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 261–269. IEEE (2005)

  34. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: 21st International Conference on Data Engineering (ICDE’05), pp. 631–642. IEEE (2005)

Download references

Acknowledgments

Muhammad Aamir Cheema is supported by ARC DE130101002 and DP130103405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaluka Salgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, C., Cheema, M. & Ali, M. Continuous monitoring of range spatial keyword query over moving objects. World Wide Web 21, 687–712 (2018). https://doi.org/10.1007/s11280-017-0488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-017-0488-3

Keywords

Navigation