Skip to main content
Log in

ProfitLeader: identifying leaders in networks with profit capacity

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Identifying ‘Leaders’ in a network is a significant step to optimize the use of available resources, accelerate or hinder spreading information. In this paper, we propose a new measure to characterize the importance of a node, called ProfitLeader, which considers the problem of critical node identification from a novel perspective: profit capacity. Unlike established approaches to identify influential nodes in networks based on its local topology or information diffusion capacity, ProfitLeader, ranks the influence of each individual node via its profit capacity. The basic idea is to view each node as a person, and measure how much profit “the person” can offer for others. Namely, the more profit “the person” provides for others, the more important the node is. To characterize the profit capacity of each node, its available resource and sharing probability to its neighbors are investigated. Building upon the profit capacity, ProfitLeader has several remarkable advantages: (a) It provides a simple, intuitive yet effective way to rank the nodes in networks from a new viewpoint; (b) ProfitLeader allows finding the most important nodes (with high quality). (c) ProfitLeader is fully automatic, and no parameters are required to be specified by users. Extensive experiments on both small networks and large-scale networks have demonstrated its superiority over several state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aristotle, J.: Betweenness centrality. ACM Sigplan Not. 48(8) (2013)

  2. Bao, Z., Ma, C., Xiang, B., Zhang, H.: Identification of influential nodes in complex networks: Method from spreading probability viewpoint. Physica A: Statist. Mech. Appl. 468, 391–397 (2017)

    Article  MATH  Google Scholar 

  3. Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111(6), 068,701 (2013)

    Article  Google Scholar 

  4. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  5. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23(3), 191–201 (2001)

    Article  Google Scholar 

  6. Bornmann, L., Daniel, H.D.: The state of h index research. EMBO Rep. 10 (1), 2–6 (2009)

    Article  Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. World Wide Web 30, 107–117 (1998)

    Google Scholar 

  8. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: IEEE International Conference on Data Mining, pp. 88–97 (2010)

  9. Chen, D., Lü, L., Shang, M., Zhang, Y., Zhou, T.: Identifying influential nodes in complex networks. Physica A: Statist. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  10. Cohen, R., Erez, K., Benavraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000)

    Article  Google Scholar 

  11. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  12. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  13. Gao, L., Song, J., Nie, F., Zou, F., Sebe, N., Shen, H.T.: Graph-without-cut: An ideal graph learning for image segmentation. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1188–1194 (2016)

  14. Gao, L., Song, J., Liu, X., Shao, J., Liu, J., Shao, J.: Learning in high-dimensional multimedia data: The state of the art. Multimed. Syst. 23(3), 303–313 (2017)

    Article  Google Scholar 

  15. Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. J. Phys. 14(8), 083,030 (2012)

    Google Scholar 

  16. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  17. Kempe, D., Kleinberg, J., Tardos, É. : Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

  18. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1–2), 81–93 (1938)

    Article  MATH  Google Scholar 

  19. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  20. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198,701 (2001)

    Article  Google Scholar 

  21. Li, X., Cai, H., Huang, Z., Yang, Y., Zhou, X.: Social event identification and ranking on flickr. World Wide Web 18(5), 1219–1245 (2015)

    Article  Google Scholar 

  22. Li, Y., Zhang, D., Tan, K.L.: Real-time targeted influence maximization for online advertisements. Proc. VlDB Endow. 8(10), 1070–1081 (2015)

    Article  Google Scholar 

  23. Li, X., Liu, Y., Jiang, Y., Liu, X.: Identifying social influence in complex networks: A novel conductance eigenvector centrality model. Neurocomputing 210, 141–154 (2016)

    Article  Google Scholar 

  24. Li, Y., Shang, Y., Yang, Y.: Clustering coefficients of large networks. Inform. Sci. 382, 350–358 (2017)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y., Tang, M., Zhou, T., Do, Y.: Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics. Scientif. Rep. 5(1), 13,172–13,172 (2015)

    Article  Google Scholar 

  26. Liu, Z., Jiang, C., Wang, J., Yu, H.: The node importance in actual complex networks based on a multi-attribute ranking method. Knowl.-Based Syst. 84, 56–66 (2015)

    Article  Google Scholar 

  27. Liu, Y., Tang, M., Zhou, T., Do, Y.: Identify influential spreaders in complex networks, the role of neighborhood. Physica A: Statist. Mech. Appl. 452, 289–298 (2016)

    Article  Google Scholar 

  28. Liu, Y., Tang, M., Do, Y., Hui, P.: Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights. Phys. Rev. E 96 (2), 022,323 (2017)

    Article  Google Scholar 

  29. Lü, L., Chen, D., Ren, X., Zhang, Q., Zhang, Y., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lü, L., Zhou, T., Zhang, Q., Stanley, H.E.: The h-index of a network node and its relation to degree and coreness. Nat.Commun. 7, 10,168–10,168 (2016)

    Article  Google Scholar 

  31. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  32. Newman, M.E.J.: Spread of epidemic disease on networks. Quantit. Biol. 66 (1–2), 016,128 (2002)

    MathSciNet  Google Scholar 

  33. Rahimkhani, K., Aleahmad, A., Rahgozar, M., Moeini, A.: A fast algorithm for finding most influential people based on the linear threshold model. Expert Syst. Appl. 42(3), 1353–1361 (2015)

    Article  Google Scholar 

  34. Rizzi, A., Iacovazzi, A., Baiocchi, A., Colabrese, S.: A low complexity real-time internet traffic flows neuro-fuzzy classifier. Comput. Netw. 91, 752–771 (2015)

    Article  Google Scholar 

  35. Shao, J., Böhm, C., Yang, Q., Plant, C.: Synchronization Based Outlier Detection. Springer, Berlin (2010)

    Book  Google Scholar 

  36. Shao, J., Han, Z., Yang, Q., Zhou, T.: Community detection based on distance dynamics. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1075–1084 (2015)

  37. Shao, J., Yang, Q., Dang, H., Schmidt, B., Kramer, S.: Scalable clustering by iterative partitioning and point attractor representation. ACM Trans. Knowl. Discov. Data 11(1), 5 (2016)

    Article  Google Scholar 

  38. Shao, J., Wang, X., Yang, Q., Plant, C., Bohm, C.: Synchronization-based scalable subspace clustering of high-dimensional data. Knowl. Inf. Syst. 52(1), 83–111 (2017)

    Article  Google Scholar 

  39. Song, J., Yang, Y., Li, X., Huang, Z., Yang, Y.: Robust hashing with local models for approximate similarity search. IEEE Trans. Syst. Man Cybern. 44(7), 1225–1236 (2014)

    Google Scholar 

  40. Song, J., Gao, L., Nie, F., Shen, H., Yan, Y., Sebe, N.: Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans. Image Process. 25(11), 4999–5011 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, J., Gao, L., Puscas, M.M., Nie, F., Shen, F., Sebe, N.: Joint graph learning and video segmentation via multiple cues and topology calibration. In: ACM on Multimedia Conference, pp. 831–840 (2016)

  42. Song, J., Gao, L., Zou, F., Yan, Y., Sebe, N.: Deep and fast: Deep learning hashing with semi-supervised graph construction. Image Vis. Comput. 55, 101–108 (2016)

    Article  Google Scholar 

  43. Sun, Z., Wang, B., Sheng, J., Hu, Y., Wang, Y., Shao, J.: Identifying influential nodes in complex networks based on weighted formal concept analysis. IEEE Access 5(99), 3777–3789 (2017)

    Article  Google Scholar 

  44. Wang, S., Du, Y., Deng, Y.: A new measure of identifying influential nodes: Efficiency centrality. Commun. Nonlinear Sci. Numer. Simul. 47, 151–163 (2017)

    Article  MathSciNet  Google Scholar 

  45. Wang, Z., Du, C., Fan, J., Xing, Y.: Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing (2017)

  46. Xiong, X., Ma, J., Wang, M., Zhou, G., Xu, K.: Information diffusion model in modular microblogging networks. World Wide Web 18(4), 1051–1069 (2015)

    Article  Google Scholar 

  47. Xu, S., Wang, P.: Identifying important nodes by adaptive leaderrank. Physica A: Statist. Mech. Appl. 469, 654–664 (2017)

    Article  Google Scholar 

  48. Zhao, J., Wu, J., Chen, M., Fang, Z., Zhang, X., Xu, K.: K-core-based attack to the internet: Is it more malicious than degree-based attack? World Wide Web 18(3), 749–766 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61403062, 61433014, 41601025), China Postdoctoral Science Foundation (2014M552344,2015M580786), Science-Technology Foundation for Young Scientist of Sichuan Province (2016JQ0007), National key research and development program (2016YFB0502300),and Sichuan province soft science research project (2017ZR0208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Shao.

Additional information

This article belongs to the Topical Collection: Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications

Guest Editors: Jingkuan Song, Shuqiang Jiang, Elisa Ricci, and Zi Huang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Shao, J., Yang, Q. et al. ProfitLeader: identifying leaders in networks with profit capacity. World Wide Web 22, 533–553 (2019). https://doi.org/10.1007/s11280-018-0537-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-018-0537-6

Keywords

Navigation