Skip to main content
Log in

Discovering key users for defending network structural stability

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

The structural stability of a network reflects the ability of the network to maintain a sustainable service. As the leave of some users will significantly break network stability, it is critical to discover these key users for defending network stability. The model of k-core, a maximal subgraph where each vertex has at least k neighbors in the subgraph, is often used to measure the stability of a network. Besides, the coreness of a vertex, the largest k such that the k-core contains the vertex, is validated as the “best practice” for measuring the engagement of the vertex. In this paper, we propose and study the collapsed coreness problem: finding b vertices (users) s.t. the deletion of these vertices leads to the largest coreness loss (the total decrease of coreness from every vertex). We prove that the problem is NP-hard and hard to approximate. We show that the collapsed coreness is more effective and challenging than the existing models. An efficient greedy algorithm is proposed with powerful pruning rules. The algorithm is adapted to find the key users within a given time limit. Extensive experiments on 12 real-life graphs demonstrate the effectiveness of our model and the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

All the source codes will be shared online after the manuscript is accepted.

Notes

  1. http://snap.stanford.edu

  2. http://networkrepository.com

References

  1. Abello, J., Resende, M. G. C., Sudarsky, S.: Massive quasi-clique detection. In: LATIN, pp. 598–612 (2002)

  2. Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NeurIPS, pp. 41–50 (2005)

  3. Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Networks Heterog. Media 3(2), 371–393 (2008). https://doi.org/10.3934/nhm.2008.3.371

    Article  MathSciNet  Google Scholar 

  4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks CoRR cs.DS/0310049 (2003)

  5. Bhawalkar, K., Kleinberg, J. M., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: The anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bola, M., Sabel, B. A.: Dynamic reorganization of brain functional networks during cognition. Neuroimage 114, 398–413 (2015)

    Article  Google Scholar 

  7. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In: SIGMOD, pp. 1006–1023 (2019)

  8. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    Article  Google Scholar 

  9. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104 (27), 11150–11154 (2007)

    Article  Google Scholar 

  10. Chang, L., Yu, J. X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)

  11. Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over large social networks. In: ICDE. https://doi.org/10.1109/ICDE.2019.00017, pp 88–99. IEEE (2019)

  12. Cheng, J., Ke, Y., Fu, A. W., Yu, J. X., Zhu, L.: Finding maximal cliques in massive networks by h*-graph. In: SIGMOD, pp. 447–458 (2010)

  13. Chu, D., Zhang, F., Lin, X., Zhang, W., Zhang, Y., Xia, Y., Zhang, C.: Finding the best k in core decomposition: A time and space optimal solution. In: ICDE. https://doi.org/10.1109/ICDE48307.2020.00065, pp 685–696 (2020)

  14. Chwe, M. S. Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67(1), 1–16 (2000)

    Article  MathSciNet  Google Scholar 

  15. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, p. 16 (2008)

  16. Daianu, M., Jahanshad, N., Nir, T.M., Toga, A.W., Jack Jr., C.R., Weiner, M.W., Thompson, P.M.: Breakdown of brain connectivity between normal aging and alzheimer’s disease: A structural k-core network analysis. Brain Connect. 3(4), 407–422 (2013). https://doi.org/10.1089/brain.2012.0137

    Article  Google Scholar 

  17. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense implicit communities in the web graph. TWEB 3(2), 7:1–7:36 (2009)

    Article  Google Scholar 

  18. Elsharkawy, S., Hassan, G., Nabhan, T., Roushdy, M.: Effectiveness of the k-core nodes as seeds for influence maximisation in dynamic cascades. Int. J. Comput., p. 2 (2017)

  19. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)

    Google Scholar 

  20. García, D., Mavrodiev, P., Schweitzer, F.: Social resilience in online communities: the autopsy of friendster. In: Conference on Online Social Networks, pp. 39–50 (2013)

  21. Ghafouri, M., Wang, K., Zhang, F., Zhang, Y., Lin, X.: Efficient graph hierarchical decomposition with user engagement and tie strength. In: DASFAA, pp. 448–465 (2020)

  22. Giatsidis, C., Malliaros, F. D., Thilikos, D. M., Vazirgiannis, M.: Corecluster: A degeneracy based graph clustering framework. In: AAAI, pp. 44–50 (2014)

  23. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J. X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)

  24. Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., Makse, H. A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)

    Article  Google Scholar 

  25. Li, R., Qin, L., Ye, F., Yu, J. X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp. 457–472 (2018)

  26. Lin, J. H., Guo, Q., Dong, W. Z., Tang, L. Y., Liu, J. G.: Identifying the node spreading influence with largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)

    Article  Google Scholar 

  27. Lin, Z., Zhang, F., Lin, X., Zhang, W., Tian, Z.: Hierarchical core maintenance on large dynamic graphs. https://doi.org/10.14778/3446095.3446099, vol. 14, pp 757–770 (2021)

  28. Linghu, Q., Zhang, F., Lin, X., Zhang, W., Zhang, Y.: Global reinforcement of social networks: The anchored coreness problem. In: Maier, D., Pottinger, R., Doan, A., Tan, W., Alawini, A., Ngo, H.Q. (eds.) SIGMOD. https://doi.org/10.1145/3318464.3389744, pp 2211–2226. ACM (2020)

  29. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (a, β)-core computation: an index-based approach. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L. (eds.) WWW. https://doi.org/10.1145/3308558.3313522, pp 1130–1141. ACM (2019)

  30. Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X.: Corecube: Core decomposition in multilayer graphs. In: WISE. https://doi.org/10.1007/978-3-030-34223-4_44, pp 694–710 (2019)

  31. Liu, B., Zhang, F., Zhang, W., Lin, X., Zhang, Y.: Efficient community search with size constraint. In: ICDE (2021)

  32. Malliaros, F. D., Rossi, M. E. G., Vazirgiannis, M.: Locating influential nodes in complex networks. Scientific Reports 6, 19307 (2016)

    Article  Google Scholar 

  33. Malliaros, F. D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)

  34. Matula, D. W., Beck, L. L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

    Article  MathSciNet  Google Scholar 

  35. Montresor, A., Pellegrini, F. D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  36. Morone, F., Del Ferraro, G., Makse, H. A.: The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat. Phys. 15(1), 95 (2019)

    Article  Google Scholar 

  37. Seidman, S. B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  38. Seki, K., Nakamura, M.: The mechanism of collapse of the friendster network: What can we learn from the core structure of friendster? Social Netw. Analys. Mining 7(1), 10:1–10:21 (2017)

    Google Scholar 

  39. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  40. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In: ICDE, pp. 233–244 (2018)

  41. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss decomposition for large-scale bipartite graphs. In: ICDE, pp. 661–672 (2020)

  42. Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., Zhang, Y.: Efficient and effective community search on large-scale bipartite graphs. In: ICDE. IEEE (2021)

  43. Wang, Y., Jian, X., Yang, Z., Li, J.: Query optimal k-plex based community in graphs. Data Sci. Eng. 2(4), 257–273 (2017). https://doi.org/10.1007/s41019-017-0051-3

    Article  Google Scholar 

  44. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J. X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

  45. Zhang, C., Zhang, F., Zhang, W., Liu, B., Zhang, Y., Qin, L., Lin, X.: Exploring finer granularity within the cores: Efficient (k, p)-core computation. In: ICDE, pp. 181–192. https://doi.org/10.1109/ICDE48307.2020.00023 (2020)

  46. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: DASFAA, pp 425–441. Springer (2018)

  47. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: The collapsed k-core problem. In: AAAI, pp. 245–251 (2017)

  48. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)

    Google Scholar 

  49. Zhang, Y., Yu, J. X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348. https://doi.org/10.1109/ICDE.2017.93(2017)

  50. Zhao, F., Tung, A. K. H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)

    Google Scholar 

  51. Zhou, R., Liu, C., Yu, J. X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT, pp. 480–491 (2012)

Download references

Acknowledgements

This work is supported by National Key Research and Development Plan (Grant No. 2018YFB1800701), National Natural Science Foundation of China (Grant No. 62002073), Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202102020675), Guangdong Higher Education Innovation Group 2020KCXTD007, Guangdong Province Key Research and Development Plan (Grant No. 2019B010137004), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019).

Funding

The grants declared in Acknowledgements were received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Availability of data and material

All the datasets used in this paper is public and every one can access to it.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Large-Scale Graph Data Analytics

Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xie, J., Wang, K. et al. Discovering key users for defending network structural stability. World Wide Web 25, 679–701 (2022). https://doi.org/10.1007/s11280-021-00905-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00905-3

Keywords