Abstract
The structural stability of a network reflects the ability of the network to maintain a sustainable service. As the leave of some users will significantly break network stability, it is critical to discover these key users for defending network stability. The model of k-core, a maximal subgraph where each vertex has at least k neighbors in the subgraph, is often used to measure the stability of a network. Besides, the coreness of a vertex, the largest k such that the k-core contains the vertex, is validated as the “best practice” for measuring the engagement of the vertex. In this paper, we propose and study the collapsed coreness problem: finding b vertices (users) s.t. the deletion of these vertices leads to the largest coreness loss (the total decrease of coreness from every vertex). We prove that the problem is NP-hard and hard to approximate. We show that the collapsed coreness is more effective and challenging than the existing models. An efficient greedy algorithm is proposed with powerful pruning rules. The algorithm is adapted to find the key users within a given time limit. Extensive experiments on 12 real-life graphs demonstrate the effectiveness of our model and the efficiency of the proposed method.











Similar content being viewed by others
Code Availability
All the source codes will be shared online after the manuscript is accepted.
References
Abello, J., Resende, M. G. C., Sudarsky, S.: Massive quasi-clique detection. In: LATIN, pp. 598–612 (2002)
Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NeurIPS, pp. 41–50 (2005)
Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Networks Heterog. Media 3(2), 371–393 (2008). https://doi.org/10.3934/nhm.2008.3.371
Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks CoRR cs.DS/0310049 (2003)
Bhawalkar, K., Kleinberg, J. M., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: The anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)
Bola, M., Sabel, B. A.: Dynamic reorganization of brain functional networks during cognition. Neuroimage 114, 398–413 (2015)
Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In: SIGMOD, pp. 1006–1023 (2019)
Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)
Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104 (27), 11150–11154 (2007)
Chang, L., Yu, J. X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)
Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over large social networks. In: ICDE. https://doi.org/10.1109/ICDE.2019.00017, pp 88–99. IEEE (2019)
Cheng, J., Ke, Y., Fu, A. W., Yu, J. X., Zhu, L.: Finding maximal cliques in massive networks by h*-graph. In: SIGMOD, pp. 447–458 (2010)
Chu, D., Zhang, F., Lin, X., Zhang, W., Zhang, Y., Xia, Y., Zhang, C.: Finding the best k in core decomposition: A time and space optimal solution. In: ICDE. https://doi.org/10.1109/ICDE48307.2020.00065, pp 685–696 (2020)
Chwe, M. S. Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67(1), 1–16 (2000)
Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, p. 16 (2008)
Daianu, M., Jahanshad, N., Nir, T.M., Toga, A.W., Jack Jr., C.R., Weiner, M.W., Thompson, P.M.: Breakdown of brain connectivity between normal aging and alzheimer’s disease: A structural k-core network analysis. Brain Connect. 3(4), 407–422 (2013). https://doi.org/10.1089/brain.2012.0137
Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense implicit communities in the web graph. TWEB 3(2), 7:1–7:36 (2009)
Elsharkawy, S., Hassan, G., Nabhan, T., Roushdy, M.: Effectiveness of the k-core nodes as seeds for influence maximisation in dynamic cascades. Int. J. Comput., p. 2 (2017)
Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)
García, D., Mavrodiev, P., Schweitzer, F.: Social resilience in online communities: the autopsy of friendster. In: Conference on Online Social Networks, pp. 39–50 (2013)
Ghafouri, M., Wang, K., Zhang, F., Zhang, Y., Lin, X.: Efficient graph hierarchical decomposition with user engagement and tie strength. In: DASFAA, pp. 448–465 (2020)
Giatsidis, C., Malliaros, F. D., Thilikos, D. M., Vazirgiannis, M.: Corecluster: A degeneracy based graph clustering framework. In: AAAI, pp. 44–50 (2014)
Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J. X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., Makse, H. A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)
Li, R., Qin, L., Ye, F., Yu, J. X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp. 457–472 (2018)
Lin, J. H., Guo, Q., Dong, W. Z., Tang, L. Y., Liu, J. G.: Identifying the node spreading influence with largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)
Lin, Z., Zhang, F., Lin, X., Zhang, W., Tian, Z.: Hierarchical core maintenance on large dynamic graphs. https://doi.org/10.14778/3446095.3446099, vol. 14, pp 757–770 (2021)
Linghu, Q., Zhang, F., Lin, X., Zhang, W., Zhang, Y.: Global reinforcement of social networks: The anchored coreness problem. In: Maier, D., Pottinger, R., Doan, A., Tan, W., Alawini, A., Ngo, H.Q. (eds.) SIGMOD. https://doi.org/10.1145/3318464.3389744, pp 2211–2226. ACM (2020)
Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (a, β)-core computation: an index-based approach. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L. (eds.) WWW. https://doi.org/10.1145/3308558.3313522, pp 1130–1141. ACM (2019)
Liu, B., Zhang, F., Zhang, C., Zhang, W., Lin, X.: Corecube: Core decomposition in multilayer graphs. In: WISE. https://doi.org/10.1007/978-3-030-34223-4_44, pp 694–710 (2019)
Liu, B., Zhang, F., Zhang, W., Lin, X., Zhang, Y.: Efficient community search with size constraint. In: ICDE (2021)
Malliaros, F. D., Rossi, M. E. G., Vazirgiannis, M.: Locating influential nodes in complex networks. Scientific Reports 6, 19307 (2016)
Malliaros, F. D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)
Matula, D. W., Beck, L. L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)
Montresor, A., Pellegrini, F. D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)
Morone, F., Del Ferraro, G., Makse, H. A.: The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat. Phys. 15(1), 95 (2019)
Seidman, S. B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)
Seki, K., Nakamura, M.: The mechanism of collapse of the friendster network: What can we learn from the core structure of friendster? Social Netw. Analys. Mining 7(1), 10:1–10:21 (2017)
Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)
Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In: ICDE, pp. 233–244 (2018)
Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss decomposition for large-scale bipartite graphs. In: ICDE, pp. 661–672 (2020)
Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., Zhang, Y.: Efficient and effective community search on large-scale bipartite graphs. In: ICDE. IEEE (2021)
Wang, Y., Jian, X., Yang, Z., Li, J.: Query optimal k-plex based community in graphs. Data Sci. Eng. 2(4), 257–273 (2017). https://doi.org/10.1007/s41019-017-0051-3
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J. X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)
Zhang, C., Zhang, F., Zhang, W., Liu, B., Zhang, Y., Qin, L., Lin, X.: Exploring finer granularity within the cores: Efficient (k, p)-core computation. In: ICDE, pp. 181–192. https://doi.org/10.1109/ICDE48307.2020.00023 (2020)
Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: DASFAA, pp 425–441. Springer (2018)
Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: The collapsed k-core problem. In: AAAI, pp. 245–251 (2017)
Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)
Zhang, Y., Yu, J. X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348. https://doi.org/10.1109/ICDE.2017.93(2017)
Zhao, F., Tung, A. K. H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)
Zhou, R., Liu, C., Yu, J. X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT, pp. 480–491 (2012)
Acknowledgements
This work is supported by National Key Research and Development Plan (Grant No. 2018YFB1800701), National Natural Science Foundation of China (Grant No. 62002073), Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202102020675), Guangdong Higher Education Innovation Group 2020KCXTD007, Guangdong Province Key Research and Development Plan (Grant No. 2019B010137004), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019).
Funding
The grants declared in Acknowledgements were received to assist with the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Availability of data and material
All the datasets used in this paper is public and every one can access to it.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Special Issue on Large-Scale Graph Data Analytics
Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang
Rights and permissions
About this article
Cite this article
Zhang, F., Xie, J., Wang, K. et al. Discovering key users for defending network structural stability. World Wide Web 25, 679–701 (2022). https://doi.org/10.1007/s11280-021-00905-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-021-00905-3