Abstract
Sparse inverse covariance estimation, i.e., Graphical Lasso, reveals the underlying structure of graph for a set of variables on the basis of their observations. The estimated graphs can then facilitate a series of downstream tasks with graph mining techniques. Multi-task Graphical Lasso is designed for collectively estimating graphs sharing an identical set of variables, but it fails to contend with the situation when the tasks include different variables. In order to address this limitation, we propose Multi-task Attributed Graphical Lasso (MAGL) to learn graphs with observations and attributes jointly. Specifically, we introduce two concrete implementations, i.e., MAGL-LogDet and MAGL-HSIC, where the LogDet divergence and the Hilbert-Schmidt independence criterion are utilized respectively to explore latent relations between attributes of the variables and linkage structures among the variables. Experimental results show the effectiveness of MAGL-LogDet and MAGL-HSIC. We then apply MAGL to fund data and estimate stock graphs for each fund. We classify funds by using graph neural networks on the estimated graphs, and prove that we can benefit from MAGL in downstream tasks.






Similar content being viewed by others
Notes
We suppress superscript k for simplicity.
References
Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E.: Alzheimer’s Disease NeuroImaging Initiative, others. Learning brain connectivity of alzheimer’s disease by sparse inverse covariance estimation. Neuroimage 50(3), 935–949 (2010)
Fan, J., Liao, Y., Liu, H: An overview of the estimation of large covariance and precision matrices. Economet J 19(1) (2016)
Giudici, P., Spelta, A.: Graphical network models for international financial flows. J. Bus. Econ. Stat. 34(1), 128–138 (2016)
Zhang, Y., Xiong, Y., Liu, X., Kong, X., Zhu, Y.: Meta-path graphical lasso for learning heterogeneous connectivities. In: SDM, pp. 642–650 (2017)
Yin, H., Liu, X., Kong, X.: Coherent graphical lasso for brain network discovery. In: ICDM (2018)
Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys. J. B-Cond. Matter Complex Syst. 11(1), 193–197 (1999)
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)
Lee, W., Liu, Y.: Joint estimation of multiple precision matrices with common structures. JMLR 16(1), 1035–1062 (2015)
Hara, S., Washio, T.: Common substructure learning of multiple graphical gaussian models. In: ECMLPKDD, pp. 1–16 (2011)
Danaher, P., Wang, P., Witten, D. M.: The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat. Soc Ser. B Stat. Methodol. 76(2), 373–397 (2014)
Yang, S., Lu, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. SIOPT 25(2), 916–943 (2015)
Tao, Q., Huang, X., Wang, S., Xi, X., Li, L.: Multiple Gaussian graphical estimation with jointly sparse penalty. Signal Process. 128, 88–97 (2016)
Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: ICML, pp. 505–512 (2006)
Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Int. Conf. Algorithmic Learning Theory, vol. 16, pp. 63–78. Springer (2005)
Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)
Hsieh, C., Sustik, M. A., Dhillon, I. S., Ravikumar, P.D.: QUIC: Quadratic approximation for sparse inverse covariance estimation. JMLR 15(1), 2911–2947 (2014)
Yuan, X.: Alternating direction methods for sparse covariance selection. Optimization Online (2009)
Mazumder, R., Hastie, T.: The graphical lasso: New insights and alternatives. EJS 6, 2125 (2012)
Cai, T., Liu, W., Luo, X.: A constrained l1 minimization approach to sparse precision matrix estimation. JASA 106(494), 594–607 (2011)
Witten, D. M., Friedman, J. H., Simon, N.: New insights and faster computations for the graphical lasso. J. Comput. Graph. Stat. 20(4), 892–900 (2011)
Grechkin, M., Fazel, M., Witten, D., Lee, S.: Pathway graphical lasso. In: AAAI, pp. 2617–2623 (2015)
Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical models. Biometrika 98(1), 1–15 (2011)
Yu, K, Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., Wu, X: Causality-based feature selection: Methods and evaluations. ACM Computing Surveys (CSUR) 53(5), 1–36 (2020)
Christina, H.-D., Nicolai, M., Jonas, P.: Invariant causal prediction for nonlinear models. J. Causal Inference 6(2) (2018)
Zhu, S., Ng, I, Chen, Z: Causal discovery with reinforcement learning. arXiv:1906.04477 (2019)
Wu, Z, Pan, S, Long, G, Jiang, J, Chang, X, Zhang, C.: Connecting the dots Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)
Ying, R., You, J., Morris, C., Ren, X.: William l hamilton, and jure leskovec: Hierarchical graph representation learning with differentiable pooling. arXiv:1806.08804 (2018)
Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., et al.: Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural Inf. Process. Syst, 33 (2020)
Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. arXiv:2007.02842 (2020)
Davis, J. V., Dhillon, I. S.: Differential entropic clustering of multivariate gaussians. In: NeurIPS, pp. 337–344 (2007)
Barshan, E., Ghodsi, A., Azimifar, Z., Jahromi, M. Z.: Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recogn. 44(7), 1357–1371 (2011)
Zhang, Y., Xiong, Y., Kong, X., Liu, X., Zhu, Y.: Multi-task attributed graphical lasso. In: APWeb-WAIM, pp. 670–684 (2020)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)
Kang, Z., Peng, C., Cheng, J., Cheng, Q.: Logdet rank minimization with application to subspace clustering. Comput Intel Neurosc 2015, 68 (2015)
Lutkepohl, H.: Handbook of matrices. Comput. Stat. Data Anal. 2 (25), 243 (1997)
Sun, Y., Han, J., Gao, J., itopicmodel, Y. Y. u.: Information network-integrated topic modeling. In: ICDM, pp. 493–502 (2009)
Gentles, A. J., Plevritis, S. K., Majeti, R., Alizadeh, A. A.: Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 304(24), 2706–2715 (2010)
Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Te Kronnie, G., Béné, M., De, VJ., Hernández, J. M., Hofmann, W., Mills, K. I., et al.: Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. Int. J. Clin. Oncol. 28(15), 2529–2537 (2010)
Maaten, L. V. D., Hinton, G.: Visualizing data using t-sne. JMLR 9, 2579–2605 (2008)
Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-I., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Li, Z, Wang, X, Li, J, Zhang, Q: Deep attributed network representation learning of complex coupling and interaction. Knowl-Based Syst 212, 106618 (2021)
Funding
This work is funded in part by the Shanghai Science and Technology Development Fund No. 19511121204, and the National Natural Science Foundation of China Projects No. U1936213, No. U1636207.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest/Competing interests
Not applicable.
Additional information
Availability of Data and Material
The data used in the paper is available at https://github.com/lunaaa95/lunahoho/tree/linux/data/Dataset.
Code availability
The codes are available at https://github.com/lunaaa95/lunahoho/tree/linux.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Yao Zhang and Sijia Peng contribute equally to this work.
This article belongs to the Topical Collection: Special Issue on Graph Data Management, Mining, and Applications Guest Editors: Xin Wang, Rui Zhang, and Young-Koo Lee
Rights and permissions
About this article
Cite this article
Zhang, Y., Peng, S., Xiong, Y. et al. Multi-task attributed graphical lasso and its application in fund classification. World Wide Web 25, 1425–1446 (2022). https://doi.org/10.1007/s11280-021-00959-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-021-00959-3