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Abstract
Online education brings more possibilities for personalized learning, in which identifying 
the cognitive state of learners is conducive to better providing learning services. Cogni-
tive diagnosis is an effective measurement to assess the cognitive state of students through 
response data of answering the problems(e.g., right or wrong). Generally, the cognitive 
diagnosis framework includes the mastery of skills required by a specified problem and 
the aggregation of skills. The current multi-skill aggregation methods are mainly divided 
into conjunctive and compensatory methods and generally considered that each skill has 
the same effect on the correct response. However, in practical learning situations, there 
may be more complex interactions between skills, in which each skill has different weight 
impacting the final result. To this end, this paper proposes a generalized multi-skill aggre-
gation method based on the Sugeno integral (SI-GAM) and introduces fuzzy measures to 
characterize the complex interactions between skills. We also provide a new idea for mod-
eling multi-strategy problems. The cognitive diagnosis process is implemented by a more 
general and interpretable aggregation method. Finally, the feasibility and effectiveness of 
the model are verified on synthetic and real-world datasets.

Keywords Cognitive diagnosis · Fuzzy measure · Sugeno integral · Multi-skill 
aggregation · Multi-skill interactions · Multiple strategies

1 Introduction

Under accelerated globalization and the rapid development of information technology, 
online education has gradually developed. To restrain the spread of COVID- 19, most 
schools around the world have been closed. Online learning on a large scale started, which 
further promoted the development of online education [35]. Online education brings more 
possibilities for the personalized learning. However, facing many learners, how to better 
provide learning services for learners is a challenging issue. The premise is to identify 
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learners’ current cognitive state. However, learners’ cognitive states can not be directly 
observed, which needs to be reflected through learning behavior. Cognitive diagnosis 
models (CDMs) can be used to identify students’ potential cognitive states and alleviate 
this problem to a certain extent. It has been viewed as a psychometric tool in educational 
assessments to estimate students’ proficiency [33]. CDMs provide specific information in 
response patterns to aid in acquiring the knowledge state that cannot be observed directly. 
In terms of students’ strengths and weaknesses, better instruction and possible interven-
tions to address individual and group needs are implemented.

Several CDMs of various formulations have been proposed in the literature. Most 
CDMs consist of three major components:(1) �-matrix [42], which is the prior knowledge 
assigned by education experts to denote which skills are needed; (2) the diagnosis vector of 
students’ proficiency of required skills; and (3) the condensation rules [34], which can be 
represented by the aggregate function. A general CDM Framework is shown in Figure 1. 
The �-matrix can build a link between problems and the corresponding skills. As shown 
in the table on the right, Problem 1 only needs a single skill, and Problem 2 requires two 
skills to be answered correctly. More skills are involved in Problem 3. The first layer of 
the CDM framework consists of several related skill nodes. Students’ proficiency in vari-
ous skills is described as vector � , which can be implied by the response to the problem 
(e.g., correct or wrong). The third layer reflects the aggregation when multiple skills are 
involved in a problem. Then, the latent response (� ) is acquired by combining the mastery 
of skills (� ) and specific aggregate functions. Finally, the success probability is computed 
by the latent response with the slip and guess factors.

From Figure 1, we can see the aggregation method of cognitive diagnosis should con-
sider the weight of skills and the determination of aggregate function in the multi-skill 
learning scenario. Although skill weight have been mentioned in a few studies, skill vec-
tors are often assumed to have the same probability of answering a problem correctly. 
Tatsuoka [41] claimed that certain skills would be more critical than others in solv-
ing a problem or completing a task. The G-DINA model [13] decomposed the sum of 
the effects due to the presence of specific skills and their interactions. Lei et  al. [21] 

Fig. 1  A general cognitive diagnosis model framework
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developed a polytomous cognitive diagnostic model that considers that different skills 
indeed have different weight. When a student with certain required skills or the subset 
of the skills’ coalition has a higher probability of answering the problem correctly, it can 
be considered that the skills are more important for solving the problem. For instance, 
a problem requires four skills X = {x1, x2, x3, x4} to be answered correctly. If the prob-
ability of correct response is similar to possessing all skills when a student only masters 
a partition of skills (e.g., {x1, x4} as shown in Table 1). The reason for this may be that 
each skill vector varies in its degrees of effect. Mastering the coalition of skills x1 and x4 
is more important than knowing the skills x2 and x3 , and their probabilities of success are 
not identical. Here, the importance of each skill affects the response. Hence, we need to 
describe the weight of a single skill and, more importantly, represent the weight of the 
subset of the skills’ coalition.

On the other hand , the functions employed to aggregate multiple skills are divided into 
two categories [36]: conjunctive and compensatory approaches. Especially, the conjunctive 
approach is widely used in CDM models, such as the deterministic inputs, noisy, ’and’ gate 
model (e.g., DINA model) [11, 22, 27] and the generalized DINA (G-DINA) model [13]. 
In these models, the interaction of multiple skills is conjunctive, which means that only a 
student who has all skills can answer the problem correctly. In the compensatory approach, 
some skills may make up for the lack of other skills, including the deterministic input, 
noisy-or-gate model (DINO) [28, 43], and the compensatory reparametrized unified model 
[23]. Based on these two approaches, Wu et al. [16, 49] further distinguished objective and 
subjective problems under this assumption: the skills’ interaction on objective (or subjec-
tive) problems is conjunctive (or compensatory). Moreover, Zhang et al. [51] modeled the 
structure of knowledge components and capture the correlations between submissions to 
evaluate student knowledge states. The difference between the conjunctive and the com-
pensatory approach is the selection of the multi-skill aggregate functions. The more skills 
involved in a problem, the more complicated it is to determine which aggregation function 
should be used, and this is not a trivial task. Neither the conjunctive nor the compensatory 
approach can effectively express the fusion between multiple skills. Generally, regardless 
of which cognitive diagnosis model is selected, the multi-skills aggregation method is con-
sidered. Thus, this paper focuses on a generalized multi-skill aggregation method to reflect 
the skill weight and aggregate functions.

The multi-strategy problem also increases the difficulty of aggregation method mod-
eling. Most CDMs ignore the diversity of strategies and assume that a single strategy that 
corresponds to a �-matrix may be used to solve a problem. As shown in Table 2, a stu-
dent may achieve success with Strategy A (using the combination of x1 and x2 ) or Strat-
egy B (using the combination of x3 and x4 ). To address the issue of multiple strategies, 
De la Torre and Douglas [10] introduced a model that extends the DINA model to allow 
for multiple strategies of problem-solving. The multi-strategy DINA model may be coded 

Table 1  Example of multi-skill 
interactions

�� �� �� �� P(Correct)

1 0 0 0 0.3
0 1 0 0 0.4
1 0 0 1 0.95
0 1 1 0 0.5
1 1 1 1 1
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by constructing M different matrices. Based on this idea, Tu et al. [46] took into account 
polytomous scoring items, and then Ma et al. [32] proposed a generalized multi-strategy 
CDM. These studies adopt multiple matrices to represent multiple strategies, while skill 
aggregation methods still only consider a single strategy [10]. In addition, in practice, the 
�-matrix is typically assigned by domain experts, which is certainly affected by the sub-
jective tendency of experts and, to a large extent, may consist of some misspecifications 
[47]. Considering multiple strategies in the multi-skill aggregation method, the model will 
become more general.

To further explore the above challenges, We introduce a general multi-skill aggregation 
method to reflect skill weight, accommodate various aggregate functions (e.g., conjunc-
tion, compensation methods), and different strategy selections. The main contributions of 
this paper are outlined as follows: 

1. Illustrate the interactions between multiple skills and model the skills’ weight.
2. Develop a general multi-skill aggregation method that is independent of any specific 

cognitive diagnosis model.
3. Put forward a new approach to explore alternative strategies in cognitive diagnosis.

The rest of the paper is as follows: Section 2 introduces the relevant background knowl-
edge, including the cognitive diagnosis model, fuzzy measure, and Sugeno integral. Sec-
tion 3 describes the modeling process of the multi-skill aggregation method in cognitive 
diagnosis. Firstly, we discuss the representation of skill weight based on the interactions. 
Secondly, the Sugeno integral is introduced to realize the aggregation of multi-skill in cog-
nitive diagnosis. Section 4 is compared with the representative models to illustrate the gen-
erality of our proposed method. In Section 5, the effectiveness of the aggregation method 
in solving multi-strategy problems is discussed and proved. Section 6 presents the experi-
ment and results. Finally, the conclusions and discussion of future research are given in 
Section 7.

2  Background

2.1  Cognitive diagnosis models

Cognitive diagnostic models (CDMs) aim to identify cognitive processing and to evalu-
ate whether a student has mastered or possesses specific cognitive skills or knowledge [16]. 
CDMs assume a relationship between the students’ knowledge mastery and the skills required 
to solve a problem. A massive effort has been made about cognitive diagnosis models, such as 
the DINA model, Item Response Theory (IRT) [6], G-DINA model [13], Polytomous Hierar-
chical DINA model (PH-DINA model) [4]. Specially, IRT is one of the most basic and classic 
psychological and educational theories which roots in psychological measurement [37]. With 

Table 2  Example of multiple 
strategies

Strategy x1 x2 x3 x4 P(Correct)

A 1 1 0 0 1
B 0 0 1 1 1
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the student’s latent trait � , problem discrimination a, and difficulty b as parameters, IRT can 
predict the probability that the student answers a specific problem correctly with a logistic 
function. The function is defined as follows:

where P(�) is the correct probability, D is a constant which often as 1.7. However, the 
latent traits of students (such as mathematics comprehensive ability) in the IRT model do 
not consider the ability of students in each skill, it is unnecessary to discuss the multi-skill 
aggregation issue.

In this section, the details of cognitive diagnosis models and involved aggregation 
methods are discussed. DINA is considered to be one of the most widely used and rep-
resentative cognitive diagnostic models. A series of extended models such as HO-DINA 
(Higher-Order DINA) [8], NIDA (the noisy inputs, deterministic “and” gate model)[27], 
and P-DINA (Polytomous deterministic inputs, noisy “and” gate[14] have been developed 
based on the DINA model, which greatly enriched the application of the DINA model. 
Firstly, we take the DINA model as a prototype to understand the process of cognitive 
diagnosis.

2.1.1  The DINA model

DINA is a dichotomous cognitive diagnosis model in which the skill’s mastery is expressed by 
{0, 1} . At this time, the calculated answer probability is either 1 or 0. Under DINA model [9], 
each item has a corresponding �-matrix, which represents the skills involved. The �-matrix 
specifies the skills required for each item and is a J × K matrix of zeros and ones; the element 
in the jth row and kth column of the matrix is named qjk.

Let �i = (�i1, �i2,⋯ , �iK) denote the proficiency of K skills that are needed to solve the 
items for the ith student. For a specific student, �i can be simplified as � . The aggregate 
function between the student’s knowledge mastery and the item specification defines the 
latent response variable:

Here, without the slipping and guessing factors, the variable �ij can be regarded as an ideal 
response or latent response, which is also known as the mastery of the ith student on the 
jth problem [40]. In this paper, �ij can be simplified as � , and the two symbols are not dis-
tinguished in the following description and can be written alternately. From (1), only a 
student who has all the skills from the �-matrix may answer a problem correctly. The skill 
weight are viewed as the same. Moreover, noise is introduced in the cognitive diagnostic 
process due to slip and guess parameters. To account for the probabilistic nature of the 
observed response, slip and guessing parameters are considered on the latent response [12], 
and are defined as sj = P(Xij = 0|�ij = 1) and gj = P(Xij = 1|�ij = 0) respectively. Here, 
Xij = 1 means that the answer is correct, otherwise it is wrong. The factor sj denotes the 
probability that a student fails to answer the problem correctly when he possesses all the 

P(�) =
1

1 + e−Da(�−b)

qjk =

{
0, if skill xk is not required by item j

1, if skill xk is required by item j

(1)�ij =

K∏

k=1

�
qjk

ik
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required skills. The factor gj is the probability of correctly answering without one or more 
required skills. Therefore, the probability of the ith student with skills mastery vector �i 
answering the jth problem correctly is given by

No matter the type of cognitive diagnosis model, the specified skill proficiency, skill 
weight, aggregate functions, and slip and guessing factors need to be considered. In the 
cognitive diagnosis process, the latent response is determined by the skills proficiency � , 
skill weight, and aggregate function( in Figure 2). The aggregation method can realize the 
generation of the latent response. In the DINA model, the weight of each skill is the same, 
and the latent response is obtained by multiplying the proficiency of multiple skills, which 
can be regarded as a conjunctive aggregate function. As long as one skill’s mastery equals 
0, the latent answering response is also 0.

2.1.2  The fuzzy cognitive diagnosis framework

Based on the general cognitive diagnosis process, the fuzzy cognitive diagnosis framework 
(FuzzyCDF) considered both subjective and objective exercise types of balancing precision 
and interpretability of the diagnosis results [31]. Without considering the weight difference, 
FuzzyCDF models two multiple skills aggregate functions according to the characteristics of 
subjective and objective problems. As shown in Figure 3 [30], the framework is a generic pro-
cess that starts with the student’s latent traits (e.g., a general ability in math) and then get the 
student’s skill proficiency as follows:

(2)P(Xij = 1|�i) = (1 − si)
�ij g

1−�ij

j

Fig. 2  The process of cognitive 
diagnosis

Fig. 3  The fuzzy cognitive diag-
nosis framework
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Here, we can see that the proficiency of a student on a specific skill(�k ) depends on the 
difference between the student’s high-order latent trait ( � ) and the properties of the skill: 
the difficulty ( bk ) and discrimination ( ak ) of skill k for student j [45]. The coefficient 1.7 is 
an empirical scaling constant in logistic cognitive models [26]. By (3), we can determine 
a student’s proficiency in specific skills from his latent trait. Next, the student’s problem 
mastery (i.e., the latent response) is computed by specific aggregation methods, and the 
observable scores are generated by considering slip and guess factors.

In FuzzyCDF, each skill is deemed as equally important. The skills’ aggregation 
on objective problems is conjunctive, and the minimum operator has been used for the 
aggregate function. The latent response � is defined as the following formulation under 
a conjunctive assumption:

For subjective problems, the skills’ aggregation is under the compensatory assumption. 
This assumption means that a student could solve the problem by mastering at least one 
required skill. The maximum operator forms the aggregate function. Similarly, the latent 
response � can be written as follows:

In DINA and FuzzyCDF, skills share the same weight, and different functions are used for 
skills fusion to form a multi-skill aggregation method. However, in the practical learning 
scenario, the weight between skills are often unequal. We also expect to establish a unified 
expression of conjunctive and complementary aggregate functions. Therefore, the deter-
mination of the aggregation method should consider the weight of multiple skills and the 
selection of the aggregate function.

2.2  Fuzzy measure

The classic measure theory stems from measuring the size of sets, such as the length of 
objects, the area of regions, or the weighted average method; these are additive meas-
ures. However, in many cases, additivity cannot be satisfied. For example, the efficiency 
of two workers’ cooperation cannot be simply equal to the sum of their efficiencies. 
Sugeno [38] first proposed weak monotonicity instead of additivity for set functions and 
called fuzzy measures. Thus, fuzzy measures can be used to handle non-additive issues. 
The fuzzy measures are an extension of the classic measure theory, enabling one to rep-
resent the non-additive property efficiently [2]. The definition is as follows:

Definition 1 A set function � ∶ 2X → [0, 1] is a fuzzy measure if it satisfies the following 
axioms: 

1. �(�) = 0 , �(X) = 1 (normalized)
2. �(A) ≤ �(B) whenever A ⊆ B for A,B ∈ 2X(monotonicity)

(3)�k =
1

1 + exp[−1.7ak(� − bk)]

(4)� = min{�k|qk = 1, k = 1, 2,⋯ ,K}

(5)� = max{�k|qk = 1, k = 1, 2,⋯ ,K}
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Here, X is denoted as a finite set of elements, such as players in a cooperative game, 
criteria in a decision problem, attributes, experts, or voters in an opinion pooling prob-
lem, etc. Specifically, if we have A ∪ B = C ⇒ �(A) + �(B) = �(C) , ∀A,B,C ⊆ 2X , the 
fuzzy measure is called a probability measure [17], which is an additive measure. The 
non-additive feature makes fuzzy measures reflect the interdependence among the ele-
ments in detail by measuring importance. Fuzzy measures � usually denote importance, 
reliability, satisfaction, or similar concepts [44].

2.3  Sugeno integral

The Sugeno integral is one of the most important fuzzy integrals, and it has been proved 
useful in several applications [20], notably in some game theory problems and multi-
criteria decision-making [18]. A decision-making problem is to find a desirable solution 
from a finite number of feasible alternatives assessed on multiple skills [48]. Here, the 
answer response depends on the proficiency of multiple skills, which is regarded as a 
decision-making problem. The properties of the Sugeno integral are well known, as well 
as its relationship with classical aggregation operators.

Definition 2 Given a finite set X = {x1, x2,⋯ , xK} , a fuzzy measure � ∶ 2X → [0, 1] and 
a function f ∶ X → [0, 1] , also written as f (xk) = �k , the Sugeno integral with respect to 
fuzzy measures � is defined by

Here, A ⊆ X for all it holds �(A) ∈ [0, 1] . Without losing generality, we assume that 
f (xk) is monotonically increasing with respect to k. Here, f (xk) is treated as a function 
that is ordered by 0 ≤ f (x1) ≤ f (x2)⋯ ≤ f (xK) ≤ 1 . The Sugeno integral is solely defined 
based on aggregate operators ∨ and ∧ as opposed to other integrals, it can be applied 
when set elements are in a complex relationship. Note that ∨(a, b) = a , if and only if 
a ≥ b , and ∧(a, b) = b , if and only if a ≥ b.

3  The generalized multi‑skill aggregation method based 
on the Sugeno integral

This section models the generalized multi-skill aggregation method based on the Sugeno 
integral (hereinafter referred to as SI-GAM) independent of any specific cognitive diagno-
sis model. SI-GAM combines the mastery supplied by required skills according to weight 
of multi-skill to obtain the latent response. Therefore, the modeling of SI-GAM consists of 
two parts: the representation of skill weight and the selection of aggregate function.

(6)(s)� fd𝜇 =
⋁

A⊆X

[min
xk∈A

f (xk) ∧ 𝜇(A)] =

K⋁

k=1

[𝛼k ∧ 𝜇{xk|f (xk) ≥ 𝛼k}]
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3.1  The representation of skill weight

Firstly, we discuss the interactions between multiple skills. The interactions exist not only 
between single skills but also between skill sets. Then, we introduce fuzzy measures for 
modeling the interactions quantitatively.

3.1.1  The interactions between multiple skills

Most entities in the real world are interconnected, which form complex networks [50]. In 
the field of learning, there are complex interactions between skills. More often than not, 
mastering certain skills increases the probability of success than getting other skills. As 
mentioned in Jimmy’s research [13], mastering three of the four required skills for the 
problem, namely, performing a basic fraction subtraction operation ( x1 ), separating the 
whole number from the fraction ( x3 ), and borrowing one from the whole number ( x4 ), pro-
vided a markedly higher probability of success compared to any other subsets of skills. 
This means that different skills may have different weight for solving a problem due to the 
influence of the skill or interactions with multiple skills. Thus, the importance of correctly 
identifying the skills cannot be overstated. The aggregation method should reflect the skill 
weight for correct answers.

The first step in making inferences with the Attribute Hierarchy Method depends on 
accurately identifying the psychological ordering of cognitive competencies required to 
solve test problems. Identifying skill hierarchies serves a critical function. In this paper, we 
discuss the possible interactions between multiple skills under the hierarchical structures 
(including linear, convergent, divergent, and independent hierarchies [29, 39]). 

1. Redundancy If the contribution of a pair of skills xi,xj is not greater than the sum of their 
individual supports, there is a negative synergistic relationship between xi and xj . That 
is to say, there is no enhancement by combining the skills xi and xj . The general formula 
is defined as: 

 Here, � denotes a certain weight, that is, the degree of support or contribution of the 
skill to the correct answer. Redundancy can be regarded as a particular case of negative 
synergies, such as the prerequisite relationship between skills. In terms of the hierar-
chical structure between skills, the prerequisite can be viewed as a linear structure. For 
example,the skill x1 is a prerequisite to skill x2 (shown in Figure 4); this implies that 
a student is not expected to possess skill x2 unless they already possess skill x1 . Thus, 
skill x2 is more important than x1 for answering the problem correctly, and thus skill 
x2 has a larger weight: 𝜔x2

> 𝜔x1
 . Then, we define the interaction of skills x1 and x2 , 

�{x1,x2}
= �x2

 , that means that the support strength of the combination of x1 and x2 is 
equal to the skill weight with more support. The skill x1 may not make any contribu-
tion to improving the correct answer rate. The redundancy relationship between xi and 
xj is defined by: 

 Hence, the supports are not additive because of the existing hierarchy relationship. 
Other skills follow a similar interpretation. Mastering skill x2 is a prerequisite for 

�{xi ,xj}
≤ �xi

+ �xj

(7)�{xi,xj}
= max(�xi

,�xj
)
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obtaining x3 . Therefore, it can be considered that there is redundancy between x3 and 
x2 , that is, �x2

+ �x3
≥ �{x2,x3}

= �x3
 . Other skill pairs ( x3 and x4 , x4 and x5 , etc.) also 

follow this relationship.
2. Positive synergy The performance of the pair of skills xi, xj is better than the sum of their 

individual performances. That is to say, the combination of xi and xj directly impacts the 
probability of a correct response as opposed to using each skill separately. The skills 
interact through compensation, and the expression is defined by: 

 Combined with the hierarchical structure between skills, the divergent structure[29] 
(Figure 5) can be considered as a manifestation of positive synergy. If a student has 
mastered both the skills x4 and x6 , the probability of answering the problem correctly 
is higher than the sum of the success probabilities of mastering skill x4 and skill x6 
alone. The coalition of x4 and x6 may produce more chemical effects, such as creating 
a new latent skill, which is important for solving the problem. This can be denoted as 
𝜔{x4,x6} > 𝜔x4

+ 𝜔x6
 . The contribution of the combination of x4 and x6 is greater than 

the sum of the two skills separately. Mastering both x4 and x6 can achieve a dramatic 
increase in the probability of success on a problem. The interaction of positive synergy 
is also non-additive.

3. Independency Intermediate case, where each skill contributes to the probability of a 
correct response: 

 As shown in Figure 6 [29], the skills under the structure are independent. There are 
additive relationships since the multiple skills do not interfere with each other. The 
expression can be written as: �{x1,x2}

= �x1
+ �x2

.

From the assumption that skills are hierarchically organized, it is essential to note that 
the structures in Figures 4, 5 and 6 can be combined to form increasingly complex net-
works of hierarchies where the complexity varies with the cognitive task. That is, there 
may be non-additive interactions between skills in the problem. Commonly used weight 
calculation methods (such as the weighted average) cannot reflect this interactive rela-
tionship between skills. Thus, our paper tries to characterize non-additive weight, which 
involves the effect of singletons and the interactions of multiple skills.

3.1.2  Using fuzzy measures for the non‑additivity weight of skills

In this paper, skills’ weight can be interpreted as certain importance, i.e., the support strength 
of skills for the correct response. Fuzzy measures are introduced to construct the non-addi-
tive weight for skills, which are powerful in characterizing the interactions of multiple skills 
[35]. For instance, we have a set of skills X = {x1, x2, x3, x4} that solve a problem, and we 
assume the fuzzy measures �({x1}) = 0.2 and �({x2}) = 0.3 . Here, the skill x2 has more 

(8)𝜔{xi ,xj} > 𝜔xi
+ 𝜔xj

(9)�{xi ,xj}
= �xi

+ �xj

Fig. 4  Linear structure between 
skills
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support than x1 for the correct response. That is to say, the skill x2 is more critical than x1 
in solving the problem. As noted earlier, we cannot apply the weighted calculation directly 
to add the support measures. If we suppose �({x1, x2}) = 0.32 , joining x1 with x2 does not 
yield a markedly higher probability of success than having a grasp of x2 alone. Obviously, 
�({x1, x2}) ≠ �({x1}) + �({x2}) . The weak monotonicity is in line with the characteristics 
of skills. We can use a non-negative monotone set function defined on its set to describe the 
importance of each information source (i.e., the support strength of the skill) and their varied 
combinations. Thus, the non-additivity of fuzzy measures can satisfy the non-additive weight 
for multi-skill aggregation. Fuzzy measures enable us to express the interactions better.

It is not comprehensive to determine the global importance of each skill only by the meas-
ure of a single skill; we must also consider the measured value of the subset involved in the 
skill. Therefore, the importance of the skills coalition should be discussed. Let us denote X as 
a set of skills containing all possible skills needed to solve the problem. Then ∀A ⊆ X , �(A) 
represents the importance or strength of the coalition A for the particular skills group under 
consideration. To have a flexible representation of complex interactions between skills (e.g., 
positive synergy or redundancy between skills), it is necessary to consider fuzzy measures in 
their full generality and not restrict oneself. In multi-skill aggregation problems, X denotes the 
set of all involved skills.

Let X = {x1, x2,⋯ , xK} be a set of skills. The number of fuzzy measures is 2X : 
�({x1}),⋯ ,�({xK}),�({x1, x2}),⋯ ,�({xk−1, xk}),⋯ ,�({x1, x2,⋯ , xK}) . We suppose that 
there are four skills required for a specific problem, the fuzzy measures are shown in Table 3.

According to Definition  1 in Section  2, �(A) ≤ �(B) whenever A ⊆ B for A,B ∈ 2X 
(monotonicity). It is easy to see that these corresponding values satisfy the properties of 
fuzzy measures. Table 3 shows that the interaction of the skill x1 and x2 is redundant, that is 
𝜇({x1, x2}) < 𝜇({x1}) + 𝜇({x2}) , and the combination of x1 and x3 enhances the support of 
success, that is 𝜇({x1, x3}) > 𝜇({x1}) + 𝜇({x3}) . Moreover, we infer that the skill x4 plays an 
important role in this problem. Using fuzzy measures instead of the equally weighted status 
can more effectively represent the interactions between skills.

Fig. 5  Divergent structure 
between skills

Fig. 6  Independent structure 
with skills
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3.2  The aggregation of multiple skills in cognitive diagnosis

Based on the importance of aggregate function selection, our idea is to propose a multi-skill 
aggregation method. This method combines the representation of skill weight and expresses 
the function of conjunctive and compensatory in a uniform way.

3.2.1  The importance of aggregate function selection

In practical learning scenarios, the aggregation of multiple skills is a complex issue. For 
an arithmetic problem, such as 4 4

12
− 2

7

12
 (Figure 7), four skills {x1, x2, x3, x4} are required 

based on the �-matrix.
Assuming the skill proficiency of a student is given in Table 4, the value is a binary 

variable in {0, 1} (Dichotomous value), such as in the DINA model and DINO model. 
If the aggregation method is conjunctive, the latent response � equals zero; the latent 
response � equals one under the compensatory approach.

The selection of an aggregate function also has a dramatic impact on the polytomous 
situation. In FuzzyCDF [49], the skill proficiency is a fuzzy variable in [0, 1] (polyto-
mous value). From Table 5, if the method is regarded as the conjunctive, using the min 
operator can compute the latent response � = 0.3 based on (4). Then the approach is the 
compensatory type, and we use the max operator to calculate � = 0.9 based on (5).

Different aggregate functions lead to different results. In other words, the selection 
of aggregate functions may influence the latent response. Specifically, if the lack of any 
skill means the student will not answer correctly, we should choose the conjunctive 
approach. Conversely, if any one of these skills can make up for the lack of other skills 
so that the student can provide the correct answer, the compensatory approach is a more 
suitable choice. However, using only the conjunctive or compensation function may not 
reflect the fusion of practical problems.

3.2.2  Using Sugeno integral for multi‑skill aggregation

In cognitive diagnosis, multiple skills may be independent or interact with each other. In 
this paper, the multi-skill aggregation should consider non-additive interaction. Further-
more, we should define an appropriate function for skills fusion. Sugeno integrals are 

Table 3  A sample of fuzzy 
measures

Fuzzy measure set Correspond-
ing value

Fuzzy measure sets Corre-
sponding 
value

∅ 0 �({x2, x3}) 0.55
�({x1}) 0.2 �({x2, x4}) 0.75
�({x2}) 0.3 �({x3, x4}) 0.78
�({x3}) 0.1 �({x2, x3, x4}) 0.85
�({x4}) 0.6 �({x1, x2, x3}) 0.87
�({x1, x2}) 0.32 �({x1, x2, x4}) 0.9
�({x1, x3}) 0.52 �({x1, x3, x4}) 0.92
�({x1, x4}) 0.72 �({x1, x2, x3, x4}) 1
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known to be one of the most influential and flexible functions. They permit the fusion 
of the information under different assumptions on the independence of the information 
sources. In particular, they can be used to model situations in which sources are independ-
ent and in cases where such independence cannot be assured. Thus, we introduce the Sug-
eno integral into the multi-skill aggregation method (SI-GAM) to represent the interactions 
and fusion of skills. The Sugeno integral models the aggregation method among globally 
important criteria. Here, the criteria denote skill proficiency, which affects problem-solving 
performance. The global importance of criteria depends on the non-additive weight, i.e., 
the fuzzy measures. From (2), we explore an alternative way to calculate � using Sugeno 
integral:

In SI-GAM, the latent response is defined over an aggregate function on the reference set 
of skills X. Then, given xk in X, the variable �k corresponds to the mastery of the skills 

(10)� =

K⋁

k=1

[�k ∧ �({xl|�l ≥ �k})]

Fig. 7  �-matrix for the fraction subtraction data

Table 4  Different aggregation for 
dichotomous

Aggregation Method Skill Proficiency (dichotomous)

�1 = 1 �2 = 0 �3 = 0 �4 = 0

Conjunctive � = 0

Compensatory � = 1

Table 5  Different aggregation for 
polytomous

Aggregation Method Skill Proficiency (polytomous)

�1 = 0.9 �2 = 0.3 �3 = 0.4 �4 = 0.6

Conjunctive � = min(�1, �2, �3, �4) = 0.3

Compensatory � = max(�1, �2, �3, �4) = 0.9
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on X. Next, sort �k , and the sorted result �(k) refers to the ordered inputs generated by 
�(1) ≤ �(2) ≤ ⋯ ≤ �(K) , that is

Here, skill weight is expressed by the fuzzy measures � , which are considered the support 
strengths for the correct response, and thus have some importance to the corresponding 
problem. The fuzzy measure �(A):

Corresponding with the chain nested subsets induced by the ordering permutation of xk . 
There are two operators involved in (10), which generalizes max-min operators. The SI-
GAM can also be defined as:

where Ak = {x(k), x(k+1),⋯ , x(K)} , and x(k) is the skill corresponding to the ranked skill’s 
mastery �(k).

Example 1 There are four skills required for solving the problem in Figure 7. The latent 
response � can be computed by the mastery of skills and corresponding fuzzy measures. 
A student’s proficiency in the four skills {x1, x2, x3, x4} is �1 = 0.9 , �2 = 0.3 , �3 = 0.4 , 
and �4 = 0.6 . �k is the vector of skill proficiency expressed on some ordinal scale. After 
reordering in ascending order, this is expressed as �(1) = �2 = 0.3 , �(2) = �3 = 0.4 , 
�(3) = �4 = 0.6 , �(4) = �1 = 0.9.

Assuming the fuzzy measures are known (seen in Table 3), it is sufficient to define the 
mapping of the proficiency of skills �k to the latent response �:

The solution of multi-skill aggregation was inspired by the Sugeno integral, one of the typi-
cal representatives for fuzzy integrals that are very useful for fusing information from various 
sources. The SI-GAM can take partial support for the result from the standpoint of each infor-
mation source and fuse it with the worth of each subset of X is a non-additive fashion. This 
worth is encoded into a fuzzy measure [1]. In our proposed SI-GAM, the interactions between 
skills are expressed by fuzzy measures, and the min-max operator expresses the aggregate 
function to realize the modeling of the multi-skill aggregation method.

(11)�(1) = min(�1, �2,⋯ , �K)

(12)�(K) = max(�1, �2,⋯ , �K)

𝜇(A) ⊆ {𝜇({x1}),⋯ ,𝜇({xK}),𝜇({x1, x2}),⋯ ,𝜇({x1, x2,⋯ , xK})}

(13)� =

K⋁

k=1

[�(k) ∧ �(Ak)]

� =

4⋁

k=1

[�(k) ∧ �(Ak)]

=(�(1) ∧ �({x(1), x(2), x(3), x(4)})
⋁

(�(2) ∧ �({x(2), x(3), x(4)})
⋁

(�(3) ∧ �({x(3), x(4)})
⋁

(�(4) ∧ �({x(4)})

=max(min(0.3, 1), min(0.4, 0.92), min(0.6, 0.72), min(0.9, 0.2))

=0.6
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4  Comparison with other cognitive diagnosis models

In this section, SI-GAM will be compared to other aggregation methods in existing models. 
Through derivation, it can be proved that SI-GAM is also applicable to current models. Firstly, 
we discuss the non-compensatory /conjunctive model (DINA) and compensatory model 
(DINO )for dichotomous response. Secondly, we compare with FuzzyCDF, which can express 
the skill fusion of conjunctive and compensatory in polytomous response simultaneously. 
Since most cognitive diagnosis models consider the equal weight of each skill, without loss of 
generality, we simplify the value of fuzzy measures � to {0, 1} , that is, if the skill sets ( AK ) has 
support for correct answering, the �(Ak) = 1 , otherwise �(Ak) = 0.

4.1  Comparison with DINA model

In the DINA model, the aggregate function is conjunctive. The fuzzy measures can be defined 
by:

Using SI-GAM, we can well describe the skills’ fusion by conjunctive approach as follows 
(14):

With SI-GAM, we can infer that the skill with the lowest mastery determines the value of 
the latent response � . Thus, if �k = 0 , the skill xk is not mastered by the student. The latent 
responses � obtained from both approaches are equal to 0. Our SI-GAM can be viewed as a 
variant of the conjunctive approach .

Example 2 Assuming the skill proficiency �1 = 1, �2 = 1, �3 = 0, �4 = 1 from 
Table  4, the response can be computed. The condensation rule in the DINA model 
typically assumes that a student that has mastered all required skills may solve 
the problem. Hence, the latent response � = 0 (1). x3 is the skill of the worst mas-
tery among the four skills. Since the DINA model is dichotomous, we can define 
�(1) = �3 = 0, �(2) = �1 = 1, �(3) = �2 = 1, �(4) = �4 = 1 . Combined with the value of 
fuzzy measures from (14), the latent response is � = 0 under SI-GAM. Table 6 shows that 
the two approaches obtain the same results. In other words, the DINA model’s conjunctive 
approach can be considered a special case of SI-GAM.

(14)�(A) =

{
1, if A = X

0, others

� =

K⋁

k=1

[�(k) ∧ �(Ak)]

=(�(1) ∧ 1)
⋁

(�(2) ∧ 0)
⋁

(�(3) ∧ 0)⋯
⋁

(�(K) ∧ 0)

=�(1)
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4.2  Comparison with DINO model

Moreover, the DINO model is the compensation version of the DINA model. It is assumed 
that a student can answer the problem correctly as long as they master any skill required by the 
problem, that is, the skills can replace or compensate each other. Thus, in the DINO model, 
the latent response can be defined as follows:

where qjk specifies whether skill xk is measured by item j. qjk takes the binary values of 0 
or 1. In case that skill k is measured by item j, qjk would take a value of 1, otherwise, qjk 
equals 0. If the students master the skill xk , then �k = 1 , and thereby 1 − �k would be 0. 
However, if the student does not master the skill �k , 1 − �k = 1 . Thus, the latent response of 
the DINO model is rewritten as:

Here, �(k) is the representation of �k sorting the skills’ mastery in ascending order, that 
means �(1) ≤ �(2) ≤ ⋯ �(K−1) ≤ �(K) . Hence, we can also illustrate the latent response vari-
able � using SI-GAM, which is written as:

Under SI-GAM, we can deduce that the skill with the highest mastery determines the 
value of the latent response � . The results are consistent with (15). Thus, it can be seen that 
the compensation approach in the DINO model can also be regarded as a special case of 
SI-GAM.

4.3  Comparison with FuzzyCDF

Similarly, SI-GAM can realize the unified modeling of aggregation under conjunctive and 
compensatory functions. Two types of fuzzy interactions express the problem mastery in 

� = 1 −

K∏

k=1

(1 − �k)
qjk

(15)
� =

{
1, if max(�(k)) = 1

0, if max(�(k)) = 0

=�(K)

� =

K⋁

k=1

[�(k) ∧ �(Ak)]

=(�(1) ∧ 1)
⋁

(�(2) ∧ 1)⋯
⋁

(�(l) ∧ 1)⋯
⋁

(�(K) ∧ 1)

=�(K)

Table 6  Different aggregation methods for dichotomous

Aggregation method Skill proficiency (dichotomous)

�(1) = 0 �(2) = 1 �(3) = 1 �(4) = 1

Conjunctive approach � = 0 × 1 × 1 × 1 = 0

SI-GAM � = max(min(0, 1), min(1, 0), min(1, 0), min(1, 0)) = 0
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(4) and (5). Suppose the skills’ interaction is conjunctive (or compensatory). In that case, a 
student’s mastery of this problem is the degree of membership of this student in the inter-
section (or union) set of the fuzzy sets related to the skills required by the problem. This 
framework fuzzifies the skill proficiency, which redefines the original binary variable (i.e., 
mastered or non-mastered) to a fuzzy one valued in [0, 1] [30]. 

1. Conjunctive aggregation For objective problems, the conjunctive aggregate function is 
defined as: 

 In our SI-GAM, we first determine the fuzzy measures by the skill’s interactions. If 
the interaction for the skills has a conjunctive feature, we can argue that there is suf-
ficient support to answer correctly if the fuzzy measure set includes all skills. We can 
infer the fuzzy measures using (14), and then, the fusion of �k with respect to � for 
each skill will give the success probability for a specified problem. For objective prob-
lems, the lowest mastery of skills has a marked impact on the outcome.

Example 3 If the problem requires four skills, we make the following assumption: �1 = 0.9 , 
�2 = 0.3 , �3 = 0.4 , �4 = 0.6 from Table  5. In FuzzyCDF, the latent response under the 
fuzzy interaction equals min(�k) = 0.3 . In SI-GAM, the value of fuzzy measures is given 
from (14), the computation of the latent response (from 13) is then expressed as:

Now, two methods obtain consistent results. The aggregation method for objective prob-
lems in FuzzyCDF is a special case of SI-GAM as well.

2. Compensatory aggregation In this case, a student could obtain a higher probability 
of success for the problem when she has mastered at least one of the required skills 
xk ∈ {x1, x2,⋯ , xK} . In FuzzyCDF, the latent response � = max(�(1), �(2),⋯ , �(K)) = �(K) 
from (5) and (12). According to Definition 1, for any �({xk}) = 1 , the fuzzy measures 
as �(B) = 1 , if xk ∈ B,B ⊆ X . Therefore, the latent response is 

 It is easy to conclude that the highest proficiency of skills �(K) is the most critical 
influence.

Example 4 Given the four skills’ proficiency as in Table  5, the latent response is 
� = max(�(k)) = 0.9 with the compensatory interaction in FuzzyCDF. We can also compute 
the result � = �(K) = 0.9 in SI-GAM. Here, SI-GAM achieves the same values with the 
aggregation method for subjective problems. Therefore, the conjunctive and compensatory 
aggregation for objective and subjective problems in FuzzyCDF can be regarded as special 
cases of SI-GAM.

� = min(�x1 , �x2 ,⋯ �xK ) = �(1)

� = max(min(0.3, 1), min(0.4, 0), min(0.6, 0), min(0.9, 0)) = 0.3

(16)

� =

K⋁

k=1

[�(k) ∧ �(Ak)]

=(�(1) ∧ 1)
⋁

(�(2) ∧ 1)⋯
⋁

(�(K) ∧ 1)

=�(K)
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In the above description, we have shown more of a generalized aggregation method 
to obtain a more precise representation of responses for each student. The fuzzy meas-
ures in SI-GAM can model the complex interactions between skills, reflect the support 
strength of skills and skill sets for the correct response, and combine the min-max oper-
ator to generate a more general aggregation method.

5  Using SI‑GAM for multiple strategies problems

In practical applications, two or more strategies may provide similar support strength 
to solve the same problem. At present, the main idea behind solving multi-strategy 
problems suppose that each item has as many as distinct strategies that would suffice. 
In the multi-strategy DINA model [10], each problem has M distinct strategies. Multi-
ple strategies may be coded by constructing M different matrices, �1,�2,⋯ ,�M . Let 
�ijm =

∏K

k=1
�
qjkm

ik
 , for m = 1, 2,⋯ ,M , where qjkm denotes the element in the jth row and 

kth column of �M . The variable �ijm indicates whether ith student has the skills to apply 
the mth strategy to the jth item. Here, the latent response �ij is denoted as:

Suppose there are two strategies for a problem. For Strategy A, there are n skills required 
to slove the problem, the set of involved skills is X1 = {xl(1)� , xl(2)� ⋯ xl(n)� } , where 
l(k)� ∈ {1, 2,⋯ ,K} . The �-matrix can be expressed as �1 = (q11, q12,⋯ , q1K) . Similar, 
the skills set X2 = {xl(1)�� , xl(2)�� ⋯ xl(m)�� } , that is, for Strategy B, m skills are needed for the 
problem, where l(k)�� ∈ {1, 2,⋯ ,K} The corresponding matrix is �2 = (q21, q22,⋯ , q2K) . 
Here, X1 ⊆ X , X2 ⊆ X and X1 ≠ X2 , and we have

Based on this assumption, following Eqs. 17 and 18, the latent response can be written as:

Since the skill proficiency �k of DINA model only takes 0 or 1, the result of multiplication 
operation depends on the lowest value of �k.

Next, we deal with multi-strategy problem using our SI-GAM. Obviously, �(X1) = 1 
and �(X2) = 1 . For the aggregate function under the DINA model is conjunctive, we 
can determine fuzzy measures as �(A) = 1 , for ∀A ⊆ X satisfying X1 ⊆ A or X2 ⊆ A , and 
�(B) = 0 for other subsets B ⊆ X.

Let Lk = {xk, xk+1,⋯ , xK} , we have

(17)�ij = max{�ij1, �ij2,⋯ , �ijM}

(18)qik =

{
1, if xk ∈ Xi, i = 1, 2

0, else

(19)

� =max{�1, �2}

=max{

l(n)�∏

k=l(1)�

�k,

l(m)��∏

k=l(1)��

�k}

=max{�(1)� , �(1)�� }

(20)
𝜇(Lk) = 1, if X1 ⊆ Lk or X2 ⊆ Lk

𝜇(Lk+1) = 0, if X1 ⊈ Lk+1 and X2 ⊈ Lk+1
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From (13), the latent response is given by

with �(Lk) = 1 , �(Lk+1) = 0 , and �(1) ≤ �(2) ⋯ ≤ �(K) . To compute the latent response, we 
need to determine the value of fuzzy measures and discuss the different cases that satisfy 
these constraints.

• Case 1. If 𝛼(1)� < 𝛼(1)�� , then � = �(k) = �(1)��.
• Case 2. If �(1)� = �(1)�� , then � = �(k) = �(1)� = �(1)��.
• Case 3. If 𝛼(1)� > 𝛼(1)�� , then � = �(k) = �(1)�.

For readability, the derivation of the latent response under three assumptions is 
presented in the Appendix 1. Here, it is not hard to notice that two methods can 
get the same result. The SI-GAM can also solve the multi-strategy problem in 
cognitive diagnosis. In addition, the SI-GAM can also deal with the polytomous 
scoring for the multiple strategies by changing the value range of the proficiency 
of skills �k to the interval of [0,  1] expands the existing multiple-strategy DINA 
Model.

Example 5 Two alternative strategies both support solving the problem; e.g., 4 4

12
− 2

7

12
 . 

Let X be a finite set X = {x1, x2, x3, x4, x5, x6,⋯ , xK} . One strategy, Strategy A, requires 
students to perform fraction subtraction with mixed numbers and involves skills 
x1, x2, x3, x4 . The other strategy, Strategy B, requires subtraction of fractions where 
mixed numbers are first changed to improper fractions and involves skills x1, x2, x6 . 
When using Strategy A, which requires skills x1, x2, x3, x4 , for the problem, arriving at 
the correct answer would involve the steps given in Figure 8. Alternatively, Strategy 
B, which requires skills x1, x2 , and x6 for this problem, involves the steps outlined in 
Figure 9. Substituting the expression for the multi-strategy DINA model (19), we get:

Suppose that the proficiency of each skill involved is �1 = 1, �2 = 1, �3 = 0, �4 = 1, �6 = 1 , 
then for Strategy A, �(1)� = 0 and for Strategy B, �(1))�� = 1 . The latent response is calculated 
as � = �(1))�� = 1,

Next, we use the SI-GAM to solve the multi-strategy problem. According to the given 
�-matrix from Figures 8 and 9, the fuzzy measures can be determined. The fuzzy meas-
ures meet the following constraints: �(A) = 1 , for ∀A ⊆ X satisfying {x1, x2, x3, x4} ⊆ A or 
{x1, x2, x6} ⊆ A . In addition, for ∀B ⊂ X , �(B) = 0 if {x1, x2, x3, x4} ⊈ B and {x1, x2, x6} ⊈ B . 
From (20), SI-GAM can be used to calculate the latent response as follows:

where �(Lk) = 1 and �(Lk+1) = 0 . Since �(1)� = 0 , and �(1)�� = 1 , it is clear that 𝛼(1)� < 𝛼(1))�� . 
We can directly use the conclusion from Case 1, that is, � = �(1))�� = 1 . Clearly, the result 
demonstrates the effectiveness of SI-GAM in solving multi-strategy problems. By the 

(21)
� =(�(1) ∧ �(L1))

⋁
(�(2) ∧ �(L2))⋯

⋁
(�(K) ∧ �(LK))

=�(k)

� =max{�1, �2}

=max{�(1)� , �(1))�� }

� =(�(1) ∧ �(L1))
⋁

(�(2) ∧ �(L2))⋯
⋁

(�(K) ∧ �(LK))

=�(k)
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specific example, it can be seen that SI-GAM can solve the multi-strategy problem instead 
of the multi-strategy DINA model.

6  Experiment

Since multi-skill aggregation is a part of cognitive diagnosis, it needs to be implemented 
in a specific cognitive diagnosis model. In the framework of FuzzyCDF, the generation 
from skill proficiency to problem mastery is the process of multi-skill aggregation. Only 
the skill aggregation process in the model is modified to more clearly observe the per-
formance brought by the aggregation method. To better understand our proposed aggre-
gation method, we put our SI-GAM into FuzzyCDF as an aggregation method to form 
an improved model ( FuzzyCDF-SI-GAM ) and represent FuzzyCDF-SI-GAM using a 
graphic model, as shown in Figure 10.

Here, what we can observe are the score matrix R, and the �-matrix with K skills 
(if the problem requires skill k, then qk = 1 ). A student is related to skill proficiency �k , 

Fig. 8  Solving a fraction subtraction problem using Strategy A 

Fig. 9  Solving a fraction subtraction problem using Strategy B 
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k = 1, 2, ...,K , which depends on latent trait � and skill parameters ak , bk , k = 1, 2, ...,K (3). 
The latent response � is determined by required skill proficiency �k and the skill weight � 
(13), and a problem score R is influenced by � and problem parameters s, g. The generation 
of the scores is simulated as follows:

In FuzzyCDF[30], the fuzzy intersection and fuzzy union are introduced to calculate the 
subjective and objective problems, respectively. However, SI-GAM is a more generalized 
aggregation method that does not distinguish between objective problems and subjective 
problems. Regardless of objective or subjective problems, SI-GAM adopts a unified formu-
lation to calculate the latent response.

6.1  DataSet description

To verify the effectiveness of the proposed SI-GAM in dealing with skills aggregation and 
multi-strategy problems, we set up experiments to predict students’ learning performance 
by synthetic and real-world datasets1. The specific work involves mapping relations from 
skill mastery to the latent response with different aggregation methods. First, the synthetic 
datasets (D1 and D2)are presented in this paper. In dataset D1, we design 10 problems 
that include three interactions between skills, i.e., redundant, enhanced, and independ-
ent. The interactive relationship between skills is reflected by the value of fuzzy meas-
ures. For example, Problem 3 involves skills x1, x3, x4 , where �({x1}) = 0.2 , which means 
that the support strength of skill x1 for the problem is 0.2. From the Table 7, it is shown 
that �({x1, x4}) = �({x1}) + �({x4}) . As can be seen from the (9), there is an independent 
relationship between skills x1 and x4 . In addition, 𝜇({x1, x3}) > 𝜇({x1}) + 𝜇({x3}) . Accord-
ing to the (8), the interaction between skills x1 and x3 is positive synergy. In D1, which 
contains complex interactions, we got the scores of 5980 students on 10 problems. While 
considering the possibility of multiple strategies for specified problem, D2 generates by 10 
problems as well. In D2 dataset, there are only two strategies for each problem. Similarly, 
we got the scores of 6209 students on 10 problems. Taking Problem 6 as an example, a 
student who has mastered the coalition of skills x1 , x2 , x4 or only mastered skill x3 and 
x4 can solve the problem. Hence, the first strategy can be represented by fuzzy measure 
�({x1, x2, x4}) = 1 , another strategy is expressed as �({x3, x4}) = 1.

P(R = 1|�, s, g) = (1 − s)� + g(1 − �)

Fig. 10  The graphic model of 
FuzzyCDF-SI-GAM

1 https:// github. com/ kathy- sj/ SI- GAM
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Table 8 describes the details of the datasets. Data sets D1 and D2 respectively contain the 
response data on 10 problems, of which Problem 1 − 6 are objective problems and the rest are 
subjective problems. Then, the fuzzy measures with respect to specified skills are constructed, 
which follow the properties of the fuzzy measures described in Section 3. The real-world data-
set (Math1) is collected from two final mathematical exams from high school students. There 
are twenty problems in Math1, including 16 objective and 4 subjective items. Each problem 
in the Math1 dataset involves more than two skills by the �-matrix. The FuzzyCDF-SI-GAM 
model obtains students’ mastery on each skill as the input, and the output is the response score 
of students. From the datasets, input-output label data can be obtained to form a training set, 
which is used to train the parameters in the FuzzyCDF-SI-GAM model.

6.2  Experimental setup

This experiment introduces an effective training algorithm using MCMC method to estimate 
model parameters [15]. The parameters involved are randomly generated by a certain distribu-
tion, so as to calculate and generate students’ probability of correct answer. Specifically, fol-
lowing the settings adopted in the HO-DINA model [45], we assume the prior distributions of 
the parameters based on the as:

where Beta(v,w, min,max) is a four-parameter Beta distribution that has two shape param-
eters v and w and is supported on the range [min,max] . In the training algorithm for Fuzzy-
CDF-SI-GAM, the joint posterior distribution of �, a, b, s, g , and �2 given the score matrix 
R is:

where L is the joint likelihood function of FuzzyCDF-SI-GAM:

(22)

� ∼ N(�� , �
2
�
), a ∼ lnN(�a, �

2
a
), b ∼ N(�b, �

2
b
),

s ∼ Beta(vs,�s,mins,maxs),

g ∼ Beta(vg,�g,ming,maxg),

1∕�2 ∼ � (x� , y�).

(23)
P(�, a, b, s, g, �2|R)
∝ L(s, g, �2, �, a, b)P(�)P(a)P(b)P(s)P(g)P(�2)

Table 7  A sample of fuzzy 
measures

Fuzzy measure sets Corre-
sponding 
value

Fuzzy measure sets Corre-
sponding 
value

∅ 0 �({x2, x3}) 0.2
�({x1}) 0.2 �({x2, x4}) 0.3
�({x2}) 0 �({x3, x4}) 0.7
�({x3}) 0.2 �({x2, x3, x4}) 0.7
�({x4}) 0.3 �{x1, x2, x3} 0.5
�({x1, x2}) 0.2 �({x1, x2, x4}) 0.5
�({x1, x3}) 0.5 �({x1, x3, x4}) 1
�({x1, x4}) 0.5 �({x1, x2, x3, x4}) 1
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where Lo and Ls denote the joint likelihood functions of objective and subjective problems, 
respectively, and they can be defined as follows:

where X = (1 − s)� + g(1 − �) . Note that � , i.e., the latent response can be calculated given 
the �-matrix by using (13). Then, the full conditional distributions of the parameters (a, b) 
given the observed score matrix R and the rest of the parameters are as follows:

Similarly, the the full conditional distributions of the parameters, e.g., �, , s, g, �2are given 
by this way.

In our FuzzyCDF-SI-GAM, we first randomize the parameters ( a, b, �, , s, g, �2 ) as 
the initial values. In this framework of FuzzyCDF-SI-GAM, fuzzy measures are known as 
prior knowledge or learned from data by other model. For each iteration, each parameter is 
uniformly and randomly sampled from a predefined interval. Then, given the observable 
R and the �-matrix, we compute the full conditional probability of skill discrimination a, 
skill difficulty b, student’ trait � , problem slip factor s, and guess factor g and the variance 
of normalized scores of subjective problems � by using (23), (24), (26), (25) and (27). 
Next, the acceptance probability of samples can also be calculated using a Metropolis-
Hastings-(M-H) based MCMC algorithm. In this way, we could estimate the parameters 
after T iterations of sampling.

6.3  Experimental results and analysis

In this section, we conduct experiments on the task of predicting the scores of students 
over each subjective or objective problem. To observe how the methods behave at differ-
ent sparsity levels, we construct different sizes of training sets, with 20% , 50% , 80% of the 
response data of each student and the rest for testing, respectively. We use the root mean 
square error (RMSE) and mean absolute error (MAE) as the evaluation metrics. Then, we 
consider baseline approaches as follows:

– IRT: a cognitive diagnosis method modeling students’ latent traits and the parameters 
of problems like difficulty and discrimination [5, 37].

(24)L(s, g, �2, �, a, b) = Lo(s, g, �, a, b)Ls(s, g, �
2, �, a, b)

(25)Lo(s, g, �, a, b) =
∏

(X)R(1 − X)1−R

(26)Ls(s, g, �
2, �, a, b) =

∏
N(R|X, �2)

(27)P(a, b|R, �, s, g, �2) ∝ L(s, g, �2, �, a, b)P(a)P(b)

Table 8  Dataset details Dataset Students Skills Problem

Obj. Sub.

D1 ( Complex Interaction ) 5980 4 6 4
D2 ( Multiple Strategies ) 6209 4 6 4
Math1 ( Real-world Dataset) 4209 11 16 4
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– DINA: a cognitive diagnosis method modeling students’ skill proficiency and the slip 
and guess factors of problems with a �-matrix. [27].

– FuzzyCDF: a fuzzy cognitive diagnosis framework for students’ cognitive modeling 
with both objective and subjective problems [30].

In order to ensure fairness of comparison, we record the best performance of each algo-
rithm by tuning their parameters. Figure 11 shows the performance of our SI-GAM model 
and other baseline approaches on two datasets when dealing with complex interactions and 
multi-strategy problems. The results prove the effectiveness of our SI-GAM. In particular, 
compared with the FuzzyCDF model, the performance is improved only by using SI- GAM 
under the same parameter training model. More importantly, as the sparsity of training 
data increases (the training data ratio decreases from 80% to 20% ), our SI- GAM still has 
advantages over other baselines. In D1 and D2, the performance of SI-GAM surpasses each 
baseline method on evaluation metrics (RMSE and MAE). In addition, it should be noted 
that SI-GAM is more explainable, it can more accurately understand the cognitive state of 
students, and better identify the support strength of multiple skills in problem-solving.

To enhance the evaluation of our SI-GAM, we also conduct the same experiment on 
the Math1(Real-World Dataset) dataset [3]. Because the dataset is not labeled with fuzzy 
measures, we learn the fuzzy measures by a neural network. In this experiment, the fuzzy 

Fig. 11  The performance of SI-GAM model and baselines
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measures are known by the Fuzzy Integral Neural Network. According to the definition 1, 
the fuzzy measures can be expressed as:

Here, the monotonicity of the fuzzy measures can be ensured. According to the monotonic-
ity constraint of fuzzy measures, the Fuzzy Integral Neural Network designs an optimiza-
tion method based on random gradient descent to realize the training of fuzzy measures 
[25]. In the experiment, AUC (Area Under the Curve) and MAE were used to compare the 
prediction of cognitive diagnostic models. Firstly, 80% of the data were randomly selected 
for training and 20% for testing. In order to further observe the effect under the differ-
ent sparsity, 20% of data were randomly selected for training, and the rest was test data. 
Table 6 shows that compared with the FuzzyCDF model, the MAE error of the SI-GAM 
decreases after introducing the fuzzy measures and has obvious advantages compared with 
the IRT and DINA model. On the other hand, we calculate the AUC metric for objective 
questions in the Math1 data set. From Table 9, the accuracy of SI-GAM is higher than all 
other baselines. In addition, with the increase of training data sparsity, the advantages of 
SI-GAM still exist. As shown from the results, our multi-skill aggregation method (SI-
GAM) can achieve a better performance in predicting students’ performance .

Furthermore, we set the sensitivity experiment of the parameters. We observe that fuzzy 
measure is an important parameter in SI-GAM, reflecting the weight of skills. However, it 
is unknown how the effectiveness of our SI-GAM varies with the precision of fuzzy meas-
ures. Therefore, we tune up the known fuzzy measures within a certain range and observe 
the corresponding latent response. Take Problem  1 in dataset D1 as an example, which 
involves three skills, x1 , x2 and x3 , where �({x1}) = 0.4,�({x2}) = 0.3,�({x3}) = 0.1 . We 
choose skill x1 , x2 with large weight for this experiment. Firstly, the value of the fuzzy 
measure �({x1}) is set to fluctuate within the range of [0.38.0.42], and other fuzzy meas-
ures of supersets containing x1 are randomly generated under the monotonicity assump-
tion. Then, we calculate the average absolute error between the latent result of adjusted 
by �({x1}) and the real result when �({x1}) = 0.4 . It can be seen from Figure 12 that the 
average absolute error is less than 2% , when �({x1}) = 0.4 changes within the range of 
[0.38, 0.42]. Similarly, we set the value of �({x2}) within the range of [0.28, 0.32], and the 
average absolute error is less than 2.1% . In dataset D2, We randomly selected a problem 
involving four skills, where �({x2}) = 0.7 and �({x3}) = 0.6 . We set up fluctuation values 
of up and down 5% for the fuzzy measures of skills x2 and x3 , respectively. As can be seen 

𝜇(A) =
⋁

B⊂A

𝜇(B) + Δ𝜇(A)

Table 9  Comparisons with 
baselines in Math1 ( Real-World 
Dataset )

Dataset Test Ratio Model MAE AUC 

Math1 20% SI-GAM 0.285 0.687
FuzzyCDF 0.322 0.678
IRT 0.330 0.648
DINA 0.375 0.633

80% SI-GAM 0.311 0.658
FuzzyCDF 0.337 0.649
IRT 0.361 0.623
DINA 0.416 0.501
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from the Figure 12, the average absolute error is still less than 2% . With the decline of the 
accuracy of fuzzy measure( within 6% ), the performance degradation begins a gradual 
drop, but the error remains at a low value, thus the SI-GAM has good stability in cognitive 
diagnosis.

6.4  Case study

Here we present an example of a student’s diagnostic result of SI-GAM on D2 for multi-
strategy problems. The Figure  13 shows the proficiency of the student on four skills. 
According to the �-matrix, the strategy used by the FuzzyCDF includes skills 3 and 4. 
Problem 6 is an objective problem, involving skills x3 and x4 . From (4), we can calculate 
the latent response based on FuzzyCDF � = min(�x3 , �x4 ) = 0.41 . Further, considering the 
slip and guess, the prediction probability is 0.42. Then, we can discretize the result for 
prediction on objective problems by the predefined threshold (usually set to be 0.5). Thus, 
the prediction equals 0. Using SI-GAM, the latent response � = 0.65 . With the slipping 
and guess factors, the prediction probability is 0.66, the result equals 1. The result of SI-
GAM model is consistent with the observed data. From the fuzzy measures, we can bet-
ter explain the diagnostic result. Since there are two strategies for solving the Problem 6, 
that is �({x1, x2, x4}) = 1 and �({x3, x4}) = 1 . Therefore, we can explain why the student 
answer correctly. Although he has a low level of skill x3 , he has a better mastery of skills 

Fig. 12  Sensitivity of Fuzzy measure

Fig. 13  The �-matrix of Problem 6 and corresponding skills’ mastery and response of a student in D2 for 
multiple strategies problems
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x1 , x2 and x4 . Therefore, he has a higher probability of success when he uses another strate-
gies (using skills x1 , x2 and x4).

From the above experiments, we can observe that the aggregation method (SI-GAM) 
proposed in this paper provides more accurate prediction results for complex skill interac-
tions and multi-strategy problems. From the perspective of the aggregation method itself, 
the fuzzy measures construct a more explanatory way of modeling the interactions between 
skills to represent the weight. In summary, SI-GAM captures the characteristics of students 
more precisely, and it is more suitable for the real-world scenarios where complex interac-
tions and multiple strategies exist.

7  Conclusion

This paper proposes a generalized multi-skill aggregation method based on the Sug-
eno integral (SI-GAM). The proposed method incorporates non-additive weight, that 
is, fuzzy measure. Through the representation of fuzzy measures, the interactions 
among multiple skills are considered. In addition, the max-min operator of Sugeno 
integral can also describe different aggregate functions, including conjunctive and 
compensatory approaches. At the same time, it also proves that our SI-GAM is suit-
able for multi-strategy issues, which provides a new idea for solving problems of mul-
tiple strategies. Our future work is to consider the learning of fuzzy measures effi-
ciently in the cognitive diagnosis model. We can also view the following two aspects 
for future research: 

1. The application of the fuzzy measures can be further expanded. The global importance 
of skill is not only determined by its own fuzzy measure, but also needs to consider the 
fuzzy measure value that includes all subsets of the skill. The shapely value and inter-
action index[19] can be used to measure each skill’s importance and mutual influence. 
The calculation of these two indices depends on the determination of the fuzzy measure 
value.

2. How to learn fuzzy measures is an important issue. In this paper, the prerequisite of 
SI-GAM is that the fuzzy measure is known as prior knowledge or learned from data 
by a neural network separately. Constructing an effective cognitive diagnosis model 
that can learn fuzzy measures simultaneously is a focus for future work. At the same 
time, we also need to consider the dimensional space of the fuzzy measure. By defini-
tion, if n skills are involved, 2n fuzzy measures are required. If there are multiple skills, 
such as n = 10 , the number of possible fuzzy measures is 1024. As the number of 
skills increases, the number of fuzzy measures will increase exponentially, bringing 
dimensional disaster. How to balance dimensional space and accuracy is also a question 
worth considering. Next, we will establish a unified expression framework for cognitive 
diagnosis based on neural networks and realize fuzzy measures learning. However, they 
are often regarded as a black box, i.e., their predictions cannot be explained [7], which 
makes our future work face more challenges.
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Appendix

The derivation of the latent response under three assumptions:

• Case 1. If 𝛼(1)� < 𝛼(1)�� , then

– If �(k) = �(1)� , then X1 ⊆ Lk and X1 ⊈ Lk+1 , thus �(Lk) = 1 . Since 𝛼(1)� < 𝛼(1)�� , 
X2 ⊆ Lk and X2 ⊆ Lk+1 . It is easy to show that the result is contrary to the (20), it 
does not meet the constraints.

– Else if �(k) = �(1)�� , then X2 ⊆ Lk , and X2 ⊈ Lk+1 . As 𝛼(1)� < 𝛼(1)�� , we can infer that 
X1 ⊈ Lk and X1 ⊈ Lk+1 . Hence, we use �(k) = �(1)�� to substitute into the calculation 
formula, which satisfies the (20), that is �(Lk) = 1 and �(Lk+1) = 0.

   Thus, the result of the latent response is given by � = �(k) = �(1)�� , when 𝛼(1)� < 𝛼(1)��.
• Case 2. If �(1)� = �(1)�� , in other words, �(k) = �(1)� = �(1)�� , then X1 ⊆ Lk , X2 ⊆ Lk , 

X1 ⊈ Lk+1 and X2 ⊈ Lk+1 . This inference meets the constraints of (20), thus �(Lk) = 1 
and �(Lk+1) = 0 . Moreover, the latent response equals to � = �(k) = �(1)� = �(1)�� , when 
�(1)� = �(1)��.

• Case 3. If 𝛼(1)� > 𝛼(1)�� , then

– If �(k) = �(1)� , then X1 ⊆ Lk , X1 ⊈ Lk+1 . For 𝛼(1)� > 𝛼(1)�� , it is clear that X2 ⊈ Lk and 
X2 ⊈ Lk+1 . According to (20), we can conclude that �(Lk) = 1 . Moreover, the latent 
response is � = �(k) = �(1)�.

– Else if �(k) = �(1)�� , then X2 ⊆ Lk , obviously, X2 ⊈ Lk+1 . Since 𝛼(1)� > 𝛼(1)�� , we can 
infer that X1 ⊈ Lk and X1 ⊆ Lk+1 . Hence, it is impossible that make �(Lk) = 1 
and �(Lk+1) = 0 . Hence, the latent response is computed by � = �(k) = �(1)� when 
𝛼(1)� > 𝛼(1)��.
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