Skip to main content
Log in

Task offloading for vehicular edge computing with edge-cloud cooperation

  • Published:
World Wide Web Aims and scope Submit manuscript

A Correction to this article was published on 17 May 2022

This article has been updated

Abstract

Vehicular edge computing (VEC) is emerging as a novel computing paradigm to meet low latency demands for computation-intensive vehicular applications. However, most existing offloading schemes do not take the dynamic edge-cloud computing environment into account, resulting in high delay performance. In this paper, we propose an efficient offloading scheme based on deep reinforcement learning for VEC with edge-cloud computing cooperation, where computation-intensive tasks can be executed locally or can be offloaded to an edge server, or a cloud server. By jointly considering: i) the dynamic edge-cloud computing environment; ii) fast offloading decisions, we leverage deep reinforcement learning to minimize the average processing delay of tasks by effectively integrating the computation resources of vehicles, edge servers, and the cloud server. Specifically, a deep Q-network (DQN) is used to adaptively learn optimal offloading schemes in the dynamic environment by balancing the exploration process and the exploitation process. Furthermore, the offloading scheme can be quickly learned by speeding up the convergence of the training process of DQN, which is good for fast offloading decisions. We conduct extensive simulation experiments and the experimental results show that the proposed offloading scheme can achieve a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

References

  1. Baek, J., Kaddoum, G.: Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet of Things Journal 8(2), 1041–1056 (2020)

    Article  Google Scholar 

  2. Chen, L., Wu, J., Zhang, J., Dai, H.N., Long, X., Yao, M.: Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation. IEEE Transactions on Cloud Computing (2020)

  3. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M.: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal 6(3), 4005–4018 (2018)

    Article  Google Scholar 

  4. Feng, J., Liu, Z., Wu, C., Ji, Y.: Ave: Autonomous vehicular edge computing framework with aco-based scheduling. IEEE Transactions on Vehicular Technology 66(12), 10660–10675 (2017)

    Article  Google Scholar 

  5. Guo, M., Li, L., Guan, Q.: Energy-efficient and delay-guaranteed workload allocation in iot-edge-cloud computing systems. IEEE Access 7, 78685–78697 (2019)

    Article  Google Scholar 

  6. Haydari, A., Yilmaz, Y.: Deep reinforcement learning for intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems (2020)

  7. Hu, L., Tian, Y., Yang, J., Taleb, T., Xiang, L., Hao, Y.: Ready player one: Uav-clustering-based multi-task offloading for vehicular vr/ar gaming. IEEE Network 33(3), 42–48 (2019)

    Article  Google Scholar 

  8. Li, Q., Wang, S., Zhou, A., Ma, X., Liu, A.X., et al.: Qos driven task offloading with statistical guarantee in mobile edge computing. IEEE Transactions on Mobile Computing (2020)

  9. Liu, Y., Wang, S., Zhao, Q., Du, S., Zhou, A., Ma, X., Yang, F.: Dependency-aware task scheduling in vehicular edge computing. IEEE Internet of Things Journal 7(6), 4961–4971 (2020)

    Article  Google Scholar 

  10. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Morra, L., Lamberti, F., Pratticó, F.G., La Rosa, S., Montuschi, P.: Building trust in autonomous vehicles: Role of virtual reality driving simulators in hmi design. IEEE Transactions on Vehicular Technology 68(10), 9438–9450 (2019)

    Article  Google Scholar 

  12. Qiao, G., Leng, S., Maharjan, S., Zhang, Y., Ansari, N.: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks. IEEE Internet of Things Journal 7(1), 247–257 (2019)

    Article  Google Scholar 

  13. Qiu, X., Liu, L., Chen, W., Hong, Z., Zheng, Z.: Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Transactions on Vehicular Technology 68(8), 8050–8062 (2019)

    Article  Google Scholar 

  14. Shu, C., Zhao, Z., Han, Y., Min, G., Duan, H.: Multi-user offloading for edge computing networks: A dependency-aware and latency-optimal approach. IEEE Internet of Things Journal 7(3), 1678–1689 (2019)

    Article  Google Scholar 

  15. Sun, Y., Zhou, S., Xu, J.: Emm: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE Journal on Selected Areas in Communications 35(11), 2637–2646 (2017)

    Article  Google Scholar 

  16. Sun, Y., Guo, X., Song, J., Zhou, S., Jiang, Z., Liu, X., Niu, Z.: Adaptive learning-based task offloading for vehicular edge computing systems. IEEE Transactions on vehicular technology 68(4), 3061–3074 (2019)

    Article  Google Scholar 

  17. Wang, H., Li, Y., Zhou, A., Guo, Y., Wang, S.: Service migration in mobile edge computing: A deep reinforcement learning approach. International Journal of Communication Systems, e4413 (2020)

  18. Wang, L.L., Gui, J.S., Deng, X.H., Zeng, F., Kuang, Z.F.: Routing algorithm based on vehicle position analysis for internet of vehicles. IEEE Internet of Things Journal 7(12), 11701–11712 (2020)

    Article  Google Scholar 

  19. Wu, H., Wolter, K., Jiao, P., Deng, Y., Zhao, Y., Xu, M.: Eedto: an energy-efficient dynamic task offloading algorithm for blockchain-enabled iot-edge-cloud orchestrated computing. IEEE Internet of Things Journal 8(4), 2163–2176 (2020)

    Article  Google Scholar 

  20. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collaborative data caching in edge computing. IEEE Transactions on Parallel and Distributed Systems 32(2), 281–294 (2020)

    Article  Google Scholar 

  21. Xu, X., Shen, B., Ding, S., Srivastava, G., Bilal, M., Khosravi, M.R., Menon, V.G., Jan, M.A., Maoli, W.: Service offloading with deep q-network for digital twinning empowered internet of vehicles in edge computing. IEEE Transactions on Industrial Informatics (2020)

  22. Xu, X., Fang, Z., Qi, L., Zhang, X., He, Q., Zhou, X.: Tripres: Traffic flow prediction driven resource reservation for multimedia iov with edge computing. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 17(2), 1–21 (2021)

    Article  Google Scholar 

  23. Yang, F., Wang, S., Li, J., Liu, Z., Sun, Q.: An overview of internet of vehicles. China communications 11(10), 1–15 (2014)

    Article  Google Scholar 

  24. Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S.: Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)

    Article  Google Scholar 

  25. Yin, H., Zhang, X., Liu, H.H., Luo, Y., Tian, C., Zhao, S., Li, F.: Edge provisioning with flexible server placement. IEEE Transactions on Parallel and Distributed Systems 28(4), 1031–1045 (2016)

    Article  Google Scholar 

  26. You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications 16(3), 1397–1411 (2016)

    Article  Google Scholar 

  27. Zhang, Y., Qin, X., Song, X.: Mobility-aware cooperative task offloading and resource allocation in vehicular edge computing. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 1–6. IEEE (2020)

  28. Zhang, K., Mao, Y., Leng, S., He, Y., Zhang, Y.: Mobile-edge computing for vehicular networks: A promising network paradigm with predictive offloading. IEEE Vehicular Technology Magazine 12(2), 36–44 (2017)

    Article  Google Scholar 

  29. Zhang, J., Guo, H., Liu, J., Zhang, Y.: Task offloading in vehicular edge computing networks: A load-balancing solution. Transactions on Vehicular Technology 69(2), 2092–2104 (2019)

    Article  Google Scholar 

  30. Zhang, Y., Lan, X., Ren, J., Cai, L.: Efficient computing resource sharing for mobile edge-cloud computing networks. IEEE/ACM Transactions on Networking 28(3), 1227–1240 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Project of Key Science Foundation of Yunnan Province under Grant No. 202101AS070007, the expert workstation of Yunnan Province under Grant No.202105AF150013, the Project of National Natural Science Foundation of China under Grant No. 61862065 and 12163004, the Major Project of Science and Technology of Yunnan Province under Grant No. 202002AD080002, the Project of Science and Technology of Yunnan Province under Grant No.202001AT070135.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

This article belongs to the Topical Collection: Special Issue on Resource Management at the Edge for Future Web, Mobile, and IoT Application

Guest Editors' names: Qiang He, Fang Dong, Chenshu Wu, and Yun Yang

The original online version of this article was revised: A modification has been in the Abstract. Full information regarding the correction made can be found in the erratum/correction for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Liu, G., Mo, Q. et al. Task offloading for vehicular edge computing with edge-cloud cooperation. World Wide Web 25, 1999–2017 (2022). https://doi.org/10.1007/s11280-022-01011-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01011-8

Keywords

Navigation