Skip to main content
Log in

Learning to effectively model spatial-temporal heterogeneity for traffic flow forecasting

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Traffic forecasting is crucial for location-based services. Recent studies tend to utilize dynamic graph neural networks to capture spatial-temporal correlations. However, urban traffic faces spatial heterogeneity of different lane structure at intersections, leading to different traffic patterns of lanes in different directions. It also confronts temporal heterogeneity of varying traffic trends in different time periods. Unfortunately, the influence of such spatial-temporal heterogeneity on traffic evolution are not fully considered in existing methods. To this end, this paper proposes a novel dynamic-graph-based model called HA-STGN, which integrates these heterogeneous features into spatial-learning components to model traffic networks in a finer granularity. Specifically, we design a dynamic graph model, which performs on a direction-aware road network to extract the structural information of intersections. Then, a time-sensitive attention mechanism is proposed to perceive the effect of time by introducing explicit temporal features. Moreover, an adaptive fusion module is provided to balance the spatial-temporal information adaptively. Finally, extensive experiments are conducted on two real-world datasets to verify the effectiveness of our model. The results show that our proposed HA-STGN can effectively capture spatial-temporal dependencies and outperform all the baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS, pp. 1–12 (2020). https://proceedings.neurips.cc/paper/2020/hash/ce1aad92b939420fc17005e5461e6f48-Abstract.html

  2. Box, G.E.P., Jenkins, G.M.: Time series analysis : forecasting and control. Journal of Time 31(3), 546–549 (2010). https://doi.org/10.1111/j.1467-9892.2009.00643.x

    Article  Google Scholar 

  3. Chandra, S.R., Al-Deek, H.: Predictions of freeway traffic speeds and volumes using vector autoregressive models. J. Intell. Transp. Syst. 13(2), 53–72 (2009). https://doi.org/10.1080/15472450902858368

    Article  Google Scholar 

  4. Chen, L., Shang, S., Guo, T.: Real-time route search by locations. In: AAAI, pp. 574–581 (2020). https://doi.org/10.1609/aaai.v34i01.5396

  5. Chen, L., Shang, S., Jensen, C.S., Yao, B., Zhang, Z., Shao, L.: Effective and efficient reuse of past travel behavior for route recommendation. In: KDD, pp. 488–498 (2019). https://doi.org/10.1145/3292500.3330835

  6. Chen, L., Shang, S., Yao, B., Li, J.: Pay your trip for traffic congestion: Dynamic pricing in traffic-aware road networks. In: AAAI, pp. 582–589 (2020). https://doi.org/10.1609/aaai.v34i01.5397

  7. Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: KDD, pp. 1503–1511 (2020). https://doi.org/10.1145/3394486.3403201

  8. Chen, Z., Yao, B., Wang, Z., Gao, X., Shang, S., Ma, S., Guo, M.: Flexible aggregate nearest neighbor queries and its keyword-aware variant on road networks. IEEE Trans. Knowl. Data Eng. 33(12), 3701–3715 (2021). https://doi.org/10.1109/TKDE.2020.2975998

    Article  Google Scholar 

  9. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: ICML. Proceedings of Machine Learning Research, vol. 70, pp. 933–941 (2017). http://proceedings.mlr.press/v70/dauphin17a.html

  10. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: AAAI, pp. 922–929 (2019). https://doi.org/10.1609/aaai.v33i01.3301922

  11. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized point-of-interest recommendation. In: IJCAI, pp. 2484–2490 (2020). https://doi.org/10.24963/ijcai.2020/344

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  13. Hong, H., Lin, Y., Yang, X., Li, Z., Fu, K., Wang, Z., Qie, X., Ye, J.: Heteta: Heterogeneous information network embedding for estimating time of arrival. In: KDD, pp. 2444–2454 (2020). https://doi.org/10.1145/3394486.3403294

  14. Hui, B., Yan, D., Chen, H., Ku, W.: Trajnet: A trajectory-based deep learning model for traffic prediction. In: KDD, pp. 716–724 (2021). https://doi.org/10.1145/3447548.3467236

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, pp. 1–15 (2015). arxiv:1412.6980

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (Poster), pp. 1–14 (2017). https://openreview.net/forum?id=SJU4ayYgl

  17. Li, K., Chen, L., Shang, S., Kalnis, P., Yao, B.: Traffic congestion alleviation over dynamic road networks: Continuous optimal route combination for trip query streams. In: IJCAI, pp. 3656–3662 (2021). https://doi.org/10.24963/ijcai.2021/503

  18. Li, K., Chen, L., Shang, S.: Towards alleviating traffic congestion: Optimal route planning for massive-scale trips. In: IJCAI, pp. 3400–3406 (2020). https://doi.org/10.24963/ijcai.2020/470

  19. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation learning for travel time estimation. In: KDD, pp. 1695–1704 (2018). https://doi.org/10.1145/3219819.3220033

  20. Li, X., Shang, Y., Cao, Y., Li, Y., Tan, J., Liu, Y.: Type-aware anchor link prediction across heterogeneous networks based on graph attention network. In: AAAI, pp. 147–155 (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5345

  21. Li, M., Tong, P., Li, M., Jin, Z., Huang, J., Hua, X.: Traffic flow prediction with vehicle trajectories. In: AAAI, pp. 294–302 (2021). https://ojs.aaai.org/index.php/AAAI/article/view/16104

  22. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: AAAI, pp. 3546–3553 (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642

  23. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR (Poster) (2018). https://openreview.net/forum?id=SJiHXGWAZ

  24. Li, Y., Li, K., Chen, C., Zhou, X., Zeng, Z., Li, K.: Modeling temporal patterns with dilated convolutions for time-series forecasting. ACM Trans. Knowl. Discov. Data 16(1), 14–11422 (2022). https://doi.org/10.1145/3453724

    Article  Google Scholar 

  25. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In: AAAI, pp. 1020–1027 (2019). https://doi.org/10.1609/aaai.v33i01.33011020

  26. Lv, Z., Xu, J., Zheng, K., Yin, H., Zhao, P., Zhou, X.: LC-RNN: A deep learning model for traffic speed prediction. In: IJCAI, pp. 3470–3476 (2018). https://doi.org/10.24963/ijcai.2018/482

  27. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphsx. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 2014–2023 (2016). http://proceedings.mlr.press/v48/niepert16.html

  28. Pan, Z., Wang, Z., Wang, W., Yu, Y., Zhang, J., Zheng, Y.: Matrix factorization for spatio-temporal neural networks with applications to urban flow prediction. In: CIKM, pp. 2683–2691 (2019). https://doi.org/10.1145/3357384.3357832

  29. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: ICONIP (1). Lecture Notes in Computer Science, vol. 11301, pp. 362–373 (2018). https://doi.org/10.1007/978-3-030-04167-0_33

  30. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. In: ICDE, pp. 1741–1742 (2018). https://doi.org/10.1109/ICDE.2018.00228

  31. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014). https://doi.org/10.1007/s00778-013-0331-0

    Article  Google Scholar 

  32. Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D., Wong, W., Woo, W.: Deep learning for precipitation nowcasting: A benchmark and A new model. In: NIPS, pp. 5617–5627 (2017). https://proceedings.neurips.cc/paper/2017/hash/a6db4ed04f1621a119799fd3d7545d3d-Abstract.html

  33. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. arxiv:1710.10903, 1–12 (2017)

  34. Wang, Z., Wang, J., Guo, Y., Gong, Z.: Zero-shot node classification with decomposed graph prototype network. In: KDD, pp. 1769–1779 (2021). https://doi.org/10.1145/3447548.3467230

  35. Wang, F., Xu, J., Liu, C., Zhou, R., Zhao, P.: MTGCN: A multitask deep learning model for traffic flow prediction. In: DASFAA, vol. 12112, pp. 435–451 (2020). https://doi.org/10.1007/978-3-030-59410-7_30

  36. Wang, F., Xu, J., Liu, C., Zhou, R., Zhao, P.: On prediction of traffic flows in smart cities: a multitask deep learning based approach. World Wide Web 24(3), 805–823 (2021). https://doi.org/10.1007/s11280-021-00877-4

    Article  Google Scholar 

  37. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results. Journal of Transportation Engineering 129(6), 664–672 (2003). https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)

    Article  Google Scholar 

  38. Wu, J., He, J., Xu, J.: Demo-net: Degree-specific graph neural networks for node and graph classification. In: KDD, pp. 406–415 (2019). https://doi.org/10.1145/3292500.3330950

  39. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: IJCAI, pp. 1907–1913 (2019). https://doi.org/10.24963/ijcai.2019/264

  40. Wu, C., Ho, J., Lee, D.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004). https://doi.org/10.1109/TITS.2004.837813

    Article  Google Scholar 

  41. Xu, S., Zhang, R., Cheng, W., Xu, J.: Mtlm: a multi-task learning model for travel time estimation. GeoInformatica 1, 1–17 (2020). https://doi.org/10.1007/s10707-020-00422-x

    Article  Google Scholar 

  42. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by a deep learning based approach. IEEE Trans. Knowl. Data Eng. 33(2), 651–666 (2021). https://doi.org/10.1109/TKDE.2019.2932984

    Article  Google Scholar 

  43. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In: IJCAI, pp. 3634–3640 (2018). https://doi.org/10.24963/ijcai.2018/505

  44. Yuan, C., Chakraborty, A.: Deep convolutional factor analyser for multivariate time series modeling. In: ICDM, pp. 1323–1328 (2016). https://doi.org/10.1109/ICDM.2016.0180

  45. Yuan, H., Li, G., Bao, Z., Feng, L.: Effective travel time estimation: When historical trajectories over road networks matter. In: SIGMOD Conference, pp. 2135–2149 (2020). https://doi.org/10.1145/3318464.3389771

  46. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661 (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14501

  47. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2020). https://doi.org/10.1109/TITS.2019.2935152

    Article  Google Scholar 

  48. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: A graph multi-attention network for traffic prediction. In: AAAI, pp. 1234–1241 (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5477

  49. Zheng, Z., Su, D.: Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C Emerging Technologies 43, 143–157 (2014). https://doi.org/10.1016/j.trc.2014.02.009

    Article  MathSciNet  Google Scholar 

  50. Zhou, F., Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J.: Meta-gnn: On few-shot node classification in graph meta-learning. In: CIKM, pp. 2357–2360 (2019). https://doi.org/10.1145/3357384.3358106

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61872258, 61772356, 61876117, and 61802273.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyang Li or Jiajie Xu.

Ethics declarations

Conflicts of interest

We declare that the named authors have no any conflict of interest.

Additional information

This article belongs to the Topical Collection: Special Issue on Spatiotemporal Data Management and Analytics for Recommend

Guest Editors: Shuo Shang, Xiangliang Zhang and Panos Kalnis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Li, X., Wang, F. et al. Learning to effectively model spatial-temporal heterogeneity for traffic flow forecasting. World Wide Web 26, 849–865 (2023). https://doi.org/10.1007/s11280-022-01045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01045-y

Keywords

Navigation