Skip to main content

Advertisement

Log in

Multi-task hourglass network for online automatic diagnosis of developmental dysplasia of the hip

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Developmental dysplasia of the hip (DDH) is one of the most common diseases in children. Due to the experience-requiring medical image analysis work, online automatic diagnosis of DDH has intrigued the researchers. Traditional implementation of online diagnosis faces challenges with reliability and interpretability. In this paper, we establish an online diagnosis tool based on a multi-task hourglass network, which can accurately extract landmarks to detect the extent of hip dislocation and predict the age of the femoral head. Our method utilizes a multi-task hourglass network, which trains an encoder-decoder network to regress the landmarks and predict the developmental age for online DDH diagnosis. With the support of precise image analysis and fast GPU computing, our method can help overcome the shortage of medical resources and enable telehealth for DDH diagnosis. Applying this approach to a dataset of DDH X-ray images, we demonstrate 4.64 mean pixel error of landmark detection compared to the results of human experts. Moreover, we can improve the accuracy of the age prediction of femoral heads to 89%. Our online automatic diagnosis system has provided service to 112 patients, and the results demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Online service can be found at http://202.38.69.241:30128/ddh.php

References

  1. Cheng, L., Shi, Y., Zhang, K.: Medical treatment migration behavior prediction and recommendation based on health insurance data. World Wide Web 23(3), 2023–2042 (2020). https://doi.org/10.1007/s11280-020-00781-3

    Article  MathSciNet  Google Scholar 

  2. Zhang, Y., Ou, W., Shi, Y., Deng, J., You, X., Wang, A.: Deep medical cross-modal attention hashing. World Wide Web, 1–18. https://doi.org/10.1007/s11280-021-00881-8 (2021)

  3. Yue, L., Tian, D., Chen, W., Han, X., Yin, M.: Deep learning for heterogeneous medical data analysis. World Wide Web 23(5), 2715–2737 (2020). https://doi.org/10.1007/s11280-019-00764-z

    Article  Google Scholar 

  4. Dezateux, C., Rosendahl, K.: Developmental dysplasia of the hip. Lancet 369(9572), 1541–1552 (2007). https://doi.org/10.1016/S0140-6736(07)60710-7

    Article  Google Scholar 

  5. Tönnis, D.: Indications and time planning for operative interventions in hip dysplasia in child and adulthood. Z. Orthop. Ihre. Grenzgeb. 123(4), 458–461 (1985)

    Google Scholar 

  6. Thieme, W.T., Thiersch, J.B.: Translation: Hilgenreiner on congenital hip dislocation. J. Pediatr. Orthop 6(2), 202–214 (1986)

    Article  Google Scholar 

  7. Harris, N.H., Lloyd-Roberts, G., Gallien, R.: Acetabular development in congenital dislocation of the hip: with special reference to the indications for acetabuloplasty and pelvic or femoral realignment osteotomy. J. Bone Joint Surg. Br. Vol. 57(1), 46–52 (1975)

    Article  Google Scholar 

  8. Lindstrom, J.R., Ponseti, I., Wenger, D.R.: Acetabular development after reduction in congenital dislocation of the hip. J. Bone Joint Surg. Am. Vol. 61(1), 112–118 (1979)

    Article  Google Scholar 

  9. Gaffney, B.M., Hillen, T.J., Nepple, J.J., Clohisy, J.C., Harris, M.D.: Statistical shape modeling of femur shape variability in female patients with hip dysplasia. J. Orthop. Res.®; 37(3), 665–673 (2019). https://doi.org/10.1002/jor.24214

    Article  Google Scholar 

  10. El-Sayed, M., Ahmed, T., Fathy, S., Zyton, H.: The effect of dega acetabuloplasty and salter innominate osteotomy on acetabular remodeling monitored by the acetabular index in walking ddh patients between 2 and 6 years of age: short-to middle-term follow-up. J. Child.’s Orthop. 6 (6), 471–477 (2012). https://doi.org/10.1007/s11832-012-0451-x

    Article  Google Scholar 

  11. Ertürk, C., Altay, M.A., Isikan, U.E.: A radiological comparison of salter and pemberton osteotomies to improve acetabular deformations in developmental dysplasia of the hip. J. Pediatr. Orthop. B 22(6), 527–532 (2013). https://doi.org/10.1097/BPB.0b013e32836337cd

    Article  Google Scholar 

  12. Roposch, A., Ridout, D., Protopapa, E., Nicolaou, N., Gelfer, Y.: Osteonecrosis complicating developmental dysplasia of the hip compromises subsequent acetabular remodeling. Clin. Orthop. Relat. Res.®; 471(7), 2318–2326 (2013). https://doi.org/10.1007/s11999-013-2804-2

    Article  Google Scholar 

  13. Sublett, J.W., Dempsey, B.J., Weaver, A.C.: Design and implementation of a digital teleultrasound system for real-time remote diagnosis. In: Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems. https://doi.org/10.1109/CBMS.1995.465413, pp 292–298 (1995)

  14. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C.S., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M.K., Pei, J., Ting, M.Y.L., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., Zhang, R., Zheng, L., Hou, R., Shi, W., Fu, X., Duan, Y., Huu, V.A.N., Wen, C., Zhang, E.D., Zhang, C.L., Li, O., Wang, X., Singer, M.A., Sun, X., Xu, J., Tafreshi, A., Lewis, M.A., Xia, H., Zhang, K.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–11319 (2018). https://doi.org/10.1016/j.cell.2018.02.010

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp 234–241. Springer, Cham (2015)

  16. Xu, J., Xie, H., Liu, C., Yang, F., Zhang, S., Chen, X., Zhang, Y.: Hip landmark detection with dependency mining in ultrasound image. IEEE Trans. Med. Imaging 40(12), 3762–3774 (2021). https://doi.org/10.1109/TMI.2021.3097355

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90, pp 770–778 (2016)

  18. Wang, B., Qi,  G.-J., Tang, S., Zhang, L., Deng, L., Zhang, Y.; Automated pulmonary nodule detection: high sensitivity with few candidates. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2018), LNCS 11071, pp 759–767, Sep. 16–20, Granada, Spain (2018)

  19. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. https://doi.org/10.1007/978-3-319-46484-8_29, pp 483–499. Springer, Cham (2016)

  20. Al-Bashir, A.K., Al-Abed, M., Sharkh, F.M.A., Kordeya, M.N., Rousan, F.M.: Algorithm for automatic angles measurement and screening for developmental dysplasia of the hip (ddh). In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/EMBC.2015.7319854, pp 6386–6389. IEEE (2015)

  21. Korman, S., Reichman, D., Tsur, G., Avidan, S.: Fast-match: Fast affine template matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2013.302, pp 2331–2338 (2013)

  22. Liu, C., Xie, H., Zhang, S., Xu, J., Sun, J., Zhang, Y.: Misshapen pelvis landmark detection by spatial local correlation mining for diagnosing developmental dysplasia of the hip. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. https://doi.org/10.1109/TMI.2020.3008382, pp 441–449. Springer (2019)

  23. Bier, B., Goldmann, F., Zaech, J.-N., Fotouhi, J., Hegeman, R.A., Grupp, R., Armand, M., Osgood, G.M., Navab, N., Maier, A.K., Unberath, M.: Learning to detect anatomical landmarks of the pelvis in x-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg., 1–11. https://doi.org/10.1007/s11548-019-01975-5(2019)

  24. Craig, J., Petterson, V.: Introduction to the practice of telemedicine. J. Telemed. Telecare 11 (1), 3–9 (2005). https://doi.org/10.1177/1357633X0501100102. PMID: 15829036

    Article  Google Scholar 

  25. Hollander, J.E., Carr, B.G.: Virtually perfect? Telemedicine for COVID-19. New Engl. J. Med. 382(18), 1679–1681 (2020). https://doi.org/10.1056/NEJMp2003539

    Article  Google Scholar 

  26. Ekeland, A.G., Bowes, A., Flottorp, S.: Effectiveness of telemedicine: A systematic review of reviews. Int. J. Med. Inform. 79(11), 736–771 (2010). https://doi.org/10.1016/j.ijmedinf.2010.08.006

    Article  Google Scholar 

  27. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  28. Long, E., Lin, H., Liu, Z., Wu, X., Wang, L., Jiang, J., An, Y., Lin, Z., Li, X., Chen, J., et al: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1 (2), 1–8 (2017). https://doi.org/10.1038/s41551-016-0024

    Article  Google Scholar 

  29. Laina, I., Rieke, N., Rupprecht, C., Vizcaíno, J.P., Eslami, A., Tombari, F., Navab, N.: Concurrent segmentation and localization for tracking of surgical instruments. In: International Conference on Medical Image Computing and Computer-assisted Intervention. https://doi.org/10.1007/s11280-019-00764-z, pp 664–672. Springer (2017)

  30. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using cnns. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. https://doi.org/10.1007/978-3-319-46723-8_27, pp 230–238. Springer (2016)

  31. Cai, X., Li, S., Liu, X., Han, G.: Vision-based fall detection with multi-task hourglass convolutional auto-encoder. IEEE Access 8, 44493–44502 (2020). https://doi.org/10.1109/ACCESS.2020.2978249

    Article  Google Scholar 

  32. Xu, Z., Huang, Q., Park, J., Chen, M., Xu, D., Yang, D., Liu, D., Zhou, S.K.: Supervised action classifier: Approaching landmark detection as image partitioning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. https://doi.org/10.1007/978-3-319-66179-7_39, pp 338–346. Springer (2017)

  33. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017). https://doi.org/10.1109/TIP.2017.2721106

    Article  MathSciNet  Google Scholar 

  34. Kordon, F., Fischer, P., Privalov, M., Swartman, B., Schnetzke, M., Franke, J., Lasowski, R., Maier, A., Kunze, H.: Multi-task localization and segmentation for x-ray guided planning in knee surgery. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. https://doi.org/10.1007/978-3-030-32226-7_69, pp 622–630. Springer, Cham (2019)

  35. Wan, J., Lai, Z., Liu, J., Zhou, J., Gao, C.: Robust face alignment by multi-order high-precision hourglass network. IEEE Trans. Image Process. 30, 121–133 (2021). https://doi.org/10.1109/TIP.2020.3032029

    Article  Google Scholar 

  36. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: Keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV. https://doi.org/10.1109/ICCV.2019.00667, pp 6568–6577 (2019)

  37. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV). https://doi.org/10.1007/978-3-030-01264-9_45, pp 734–750 (2018)

  38. Liu, A.-A., Su, Y.-T., Nie, W.-Z., Kankanhalli, M.: Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 102–114 (2017)

    Article  Google Scholar 

  39. Li, G., Xu, F., Li, H., Yuan, Y., An, M.: Dra-odm: a faster and more accurate deep recurrent attention dynamic model for object detection. World Wide Web. https://doi.org/10.1007/s11280-021-00971-7 (2021)

  40. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2015.7298965, pp 3431–3440. IEEE Computer Society, Los Alamitos, CA, USA (2015)

  41. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  42. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. https://doi.org/10.48550/arXiv.1904.07850 (2019)

  43. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

  44. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

  45. Xu, N., Zhang, H.-W., Liu, A.-A., Nie, W.-Z., Su, Y.-T., Nie, J., Zhang, Y.-D.: Multi-level policy and reward-based deep reinforcement learning framework for image captioning. IEEE Trans. Multimedia 22(5), 1372–1383 (2019)

    Article  Google Scholar 

  46. Deng, L., Tang, S., Fu, H., Wang, B., Zhang, Y.: Spatiotemporal breast mass detection network (MD-Net) in 4D DCE-MRI images. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), LNCS 11767, pp 271–279, Oct. 13–17, Shenzhen, China (2019)

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (62022076, 61972105, 61976008, U19A2057), the China Postdoctoral Science Foundation (2021M703081), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Xie or Qingfeng Tan.

Ethics declarations

Conflict of Interests

The authors declare that there have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xie, H., Tan, Q. et al. Multi-task hourglass network for online automatic diagnosis of developmental dysplasia of the hip. World Wide Web 26, 539–559 (2023). https://doi.org/10.1007/s11280-022-01051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01051-0

Keywords