Skip to main content

Advertisement

Log in

Distributed processing of spatiotemporal ocean data: a survey

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Ocean data exhibits interesting yet human critical features affecting all creatures around the world. Studies on Hydrology and Oceanology become the root of many disciplines, including global resource management, macro economy, environment protection, climate predictions, etc, which motivates our further exploration on the underlying feature behind the ocean data. However, with high dimensionality, large quantities, heterogeneous sources, and especially, the spatiotemporal manner, the diversity between the specific knowledge required and massive data chunk puts forward unique challenges in data representation and knowledge mining, effectively. This paper tends to provide a summary of studies on these issues, including the data representation, data processing, knowledge discovery, and algorithms on finding unique patterns on ocean environment changes, such as temperature, tide height, waves, salinity, etc. In detail, we comprehensively discuss about ocean spatiotemporal data processing techniques. We further summarize related representation works on ocean spatiotemporal data, the construction of a ocean knowledge graph, and the management of ocean spatiotemporal data. At last, we combine and compare the collection of the evolution and multiple state-of-the-arts on ocean spatiotemporal data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chung, C.-J.F., Fabbri, A.G.: The representation of geoscience information for data integration. Nonrenewab. Resour. 2(2), 122–139 (1993)

    Article  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Amer. 284(5), 34–43 (2001)

    Article  Google Scholar 

  3. Sowa, J.F.: Semantic networks (1987)

  4. Shortliffe, E.: Computer-based Medical Consultations: MYCIN, vol. 2. Elsevier (2012)

  5. Group, R.W.: Resource Description Framework (RDF). https://www.w3.org/RDF/ Accessed 02 Feb 2014

  6. Staab, S., Studer, R.: Handbook on Ontologies. Springer (2010)

  7. Lenat, D.B.: Cyc: A large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  8. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp 1247–1250 (2008)

  9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al: Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Sem. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  10. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp 697–706 (2007)

  11. Nakashole, N., Theobald, M., Weikum, G.: Scalable knowledge harvesting with high precision and high recall. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp 227–236 (2011)

  12. Singhal, A.: Introducing the Knowledge Graph: Things, Not Strings. https://blog.google/products/search/introducing-knowledge-graph-things-not.html Accessed: 2012

  13. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 601–610 (2014)

  14. James, P.: Knowledge graphs. In: Invan de Riet, R., Meersman, R. (eds.) . 1991 Workshop on Linguistic Instruments in Knowledge Engineering ; Conference date: 17-01-1991 Through 18-01-1991, pp 97–117. Elsevier (1992)

  15. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial open data. Sem. Web 3(4), 333–354 (2012)

    Article  Google Scholar 

  16. Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P., Stasch, C.: Semantic enablement for spatial data infrastructures. Trans. GIS 14 (2), 111–129 (2010)

    Article  Google Scholar 

  17. Dykes, J.A.: Exploring spatial data representation with dynamic graphics. Comput. Geosci. 23(4), 345–370 (1997)

    Article  Google Scholar 

  18. Shepherd, I.: Putting time on the map: Dynamic displays in data visualization and GIS. In: Fisher, PF (ed.) Innovations in GIS, vol. 2. Taylor & Francis, London (1995)

  19. Tuohy, S.T., Patrikalakis, N.M.: Non-linear data representation for ocean exploration and visualization. J. Vis. Comput. Animat. 7(3), 125–139 (1996)

    Article  Google Scholar 

  20. Bibby, C., Reid, I.: A hybrid slam representation for dynamic marine environments. In: 2010 IEEE International Conference on Robotics and Automation, pp 257–264. IEEE (2010)

  21. Raskin, R., Pan, M.: Semantic web for earth and environmental terminology (sweet). In: Proc. of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data, vol. 25 (2003)

  22. MacGregor, R.M., Ko, I.-Y.: Representing contextualized data using semantic web tools. In: PSSS (2003)

  23. Frank, A.U.: Ontology for spatio-temporal databases. In: Spatio-temporal Databases, pp. 9–77. Springer (2003)

  24. Dividino, R., Soares, A., Isenor, A., Webb, S., Brousseau, M.: Semantic integration of real-time heterogeneous data streams for ocean-related decision making. https://doi.org/10.14339/STO-MP-IST-160-S1-3-PDF (2018)

  25. Soares, A., Dividino, R., Abreu, F., Brousseau, M., Isenor, A.W., Webb, S., Matwin, S.: Crisis: Integrating ais and ocean data streams using semantic web standards for event detection. In: 2019 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–7. IEEE (2019)

  26. Wang, S., Zhang, X., Ye, P., Du, M., Lu, Y., Xue, H.: Geographic knowledge graph (geokg): A formalized geographic knowledge representation. ISPRS Int. J. Geo-Inform. 8(4), 184 (2019)

    Article  Google Scholar 

  27. Ren, X.-L., Ren, K.-J., Xu, Z.-C., Li, X.-Y., Zhou, A.-L., Song, J.-Q., Deng, K.-F.: Improving ocean data services with semantics and quick index. J. Comput. Sci. Technol. 36(5), 963–984 (2021)

    Article  Google Scholar 

  28. Russell, S., Norvig, P.: Artificial intelligence: A modern approach (2002)

  29. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  30. Arvidsson, F., Flycht-Eriksson, A.: Ontologies i. (PDF). http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf. Retrieved 26 (2008)

  31. Gómez-Pérez, A.: Knowledge sharing and reuse. In: The Handbook of Applied Expert Systems, pp. 10–1. CRC Press (2019)

  32. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Human-Comput. Stud. 43(5-6), 907–928 (1995)

    Article  Google Scholar 

  33. Galton, A.: Desiderata for a spatio-temporal geo-ontology. In: International Conference on Spatial Information Theory, pp. 1–12. Springer (2003)

  34. Bittner, T., Donnelly, M., Smith, B.: A spatio-temporal ontology for geographic information integration. Int. J. Geogr. Inf. Sci. 23(6), 765–798 (2009)

    Article  Google Scholar 

  35. Bittner, T., Smith, B.: Granular spatio-temporal ontologies. In: Proceedings of the AAAI Spring Symposium on Foundations and Applications of Spatio-temporal Reasoning, pp 12–17 (2003)

  36. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., De Melo, G., Weikum, G.: Yago2: Exploring and querying world knowledge in time, space, context, and many languages. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp 229–232 (2011)

  37. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press (1998)

  38. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely yago: Harvesting, querying, and visualizing temporal knowledge from wikipedia. In: Proceedings of the 13th International Conference on Extending Database Technology, pp 697–700 (2010)

  39. Vasseur, B., Van de Vlag, D., Stein, A., Jeansoulin, R., Dilo, A.: Spatio-temporal ontology for defining the quality of an application. In: Proceedings of ISSDQ, Bruck an der Leitha, pp 15–17, Austria (2004)

  40. Kurte, K.R., Durbha, S.S., King, R.L., Younan, N.H., Potnis, A.V.: A spatio-temporal ontological model for flood disaster monitoring. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5213–5216. IEEE (2017)

  41. Hornsby, K., Egenhofer, M.J.: Identity-based change: A foundation for spatio-temporal knowledge representation. Int. J Geograph. Inform. Sci. 14(3), 207–224 (2000)

    Article  Google Scholar 

  42. Neumaier, S., Polleres, A.: Enabling spatio-temporal search in open data. J. Web Sem. 55, 21–36 (2019)

    Article  Google Scholar 

  43. Grenon, P.: The Formal Ontology of Spatio-Temporal Reality and its Formalization. AAAI Press, Amsterdam (2003)

    Google Scholar 

  44. Carstensen, K.-U.: Spatio-temporal ontologies and attention. Spatial Cogn. Comput. 7(1), 13–32 (2007)

    Article  Google Scholar 

  45. Kauppinen, T., Henriksson, R., Sinkkilä, R., Lindroos, R., Väätäinen, J., Hyvönen, E.: Ontology-Based Disambiguation of Spatiotemporal Locations. In: IRSW. Citeseer (2008)

  46. Grenon, P., Smith, B.: Snap and span: Towards dynamic spatial ontology. Spatial Cogn. Comput. 4(1), 69–104 (2004)

    Article  Google Scholar 

  47. Budak Arpinar, I., Sheth, A., Ramakrishnan, C., Lynn Usery, E., Azami, M., Kwan, M.-P.: Geospatial ontology development and semantic analytics. Trans. GIS 10(4), 551–575 (2006)

    Article  Google Scholar 

  48. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: Deepdive: Web-scale knowledge-base construction using statistical learning and inference. VLDS 12, 25–28 (2012)

    Google Scholar 

  49. Jayawardhana, U.K., Gorsevski, P.V.: An ontology-based framework for extracting spatio-temporal influenza data using twitter. Int. J. Gigit. Earth 12(1), 2–24 (2019)

    Article  Google Scholar 

  50. Strötgen, J., Gertz, M., Popov, P.: Extraction and exploration of spatio-temporal information in documents. In: Proceedings of the 6th Workshop on Geographic Information Retrieval, pp. 1–8 (2010)

  51. Zhang, C., Zhang, X., Jiang, W., Shen, Q., Zhang, S.: Rule-based extraction of spatial relations in natural language text. In: 2009 International Conference on Computational Intelligence and Software Engineering, pp. 1–4. IEEE (2009)

  52. Mirza, P., Tonelli, S.: Catena: Causal and temporal relation extraction from natural language texts. In: The 26th International Conference on Computational Linguistics, pp. 64–75. ACL (2016)

  53. Qiu, Q., Xie, Z., Wu, L., Tao, L.: Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques. Earth Sci. Inform. 13(4), 1393–1410 (2020)

    Article  Google Scholar 

  54. Chen, Y., Sun, Q.L., Zhong, K.: Semi-supervised spatio-temporal cnn for recognition of surgical workflow. EURASIP J. Image Video Process. 2018 (1), 1–9 (2018)

    Article  Google Scholar 

  55. Lu, P.Y., Kim, S., Soljačić, M.: Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning. Phys. Rev. X 10(3), 031056 (2020)

    Google Scholar 

  56. Mesquita, F., Schmidek, J., Barbosa, D.: Effectiveness and efficiency of open relation extraction. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp 447–457 (2013)

  57. Zhou, H., Li, M., Gu, Z., Tian, Z.: Spatiotemporal data cleaning and knowledge fusion. In: MDATA: A New Knowledge Representation Model, pp. 32–50. Springer (2021)

  58. Zhou, H., Li, M., Gu, Z.: Knowledge fusion and spatiotemporal data cleaning: A review. In: 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC), pp. 295–301. IEEE (2020)

  59. Raffaetà, A., Turini, F., Renso, C.: Enhancing giss for spatio-temporal reasoning. In: Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp 42–48 (2002)

  60. Mantle, M., Batsakis, S., Antoniou, G.: Large scale distributed spatio-temporal reasoning using real-world knowledge graphs. Knowl.-Based Syst. 163, 214–226 (2019)

    Article  Google Scholar 

  61. Batsakis, S., Petrakis, E.G.: Sowl: Spatio-temporal representation, reasoning and querying over the semantic web. In: Proceedings of the 6th International Conference on Semantic Systems, pp 1–9 (2010)

  62. Strobl, C.: Postgis 891–898 (2008)

  63. OracleSpatialTeam: Oracle Spatial and Graph Features. https://www.oracle.com/database/technologies/spatialandgraph.html

  64. Adler, D.W.: Db2 spatial extender-spatial data within the rdbms. In: VLDB, pp. 687–690. Roma (2001)

  65. Furieri, A.: Spatialite. linha] Disponível em: https://www.gaiagis.it/fossil/libspatialite/index. [Acedido: 30-Nov-2015] (2014)

  66. MySQLTeam: MySQL 8.0 Reference Manual. https://dev.mysql.com/doc/refman/8.0/en/

  67. Fang, Y., Friedman, M., Nair, G., Rys, M., Schmid, A.-E.: Spatial indexing in microsoft sql server 2008. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp 1207–1216 (2008)

  68. Wang, P., Wang, J., Li, C., Wang, J., Zhu, H., Guo, M.: Grus: Toward unified-memory-efficient high-performance graph processing on gpu. ACM Trans. Arch. Code Optim. (TACO) 18(2), 1–25 (2021)

    Article  Google Scholar 

  69. Zhang, W., Chen, Q., Zheng, N., Cui, W., Fu, K., Guo, M.: Towards qos-awareness and improved utilization of spatial multitasking gpus. IEEE Transactions on Computers (2021)

  70. OGC: OGC Simple Feature Access - Part 2: SQL. https://www.ogc.org/standards/sfs

  71. Stolze, K.: The standard to manage spatial data in relational database systems. In: Memorias de 10th Conference on Database Systems for Busines, Technology and Web (2003)

  72. Han, J., Haihong, E., Le, G., Du, J.: Survey on nosql database. In: 2011 6th International Conference on Pervasive Computing and Applications, pp. 363–366. IEEE (2011)

  73. Salvatore, S., Pieter, N., Matt, S.: Redis: An in-memory database that persists on disk (2011)

  74. Narayanam, S., Wang, S.: Oracle nosql database (2016)

  75. Cassandra, A.: Manage massive amounts of data, fast, without losing sleep. Cassandra. apache org (2015)

  76. Mongo, D.: Mongodb. https://docs.mongodb.com/manual/geospatial-queries/(2015)

  77. Lorezno, C.M., Mata, P.M.: Couchbase (2015)

  78. Graph, N.: Open Source, Distributed, Scalable, Lightning Fast. https://nebula-graph.io/ (2022)

  79. Webber, J.: A programmatic introduction to neo4j. In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, pp. 217–218 (2012)

  80. PgpoolTeam: Pgpool-II: A middleware that works between PostgreSQL servers and a PostgreSQL database client. https://wiki.postgresql.org/wiki/Pgpool-{{II}} (2020)

  81. Momjian, B.: The Future of Postgres Sharding. https://momjian.us/main/writings/pgsql/sharding.pdf (2021)

  82. Fu, K., Zhang, W., Chen, Q., Zeng, D., Guo, M.: Adaptive resource efficient microservice deployment in cloud-edge continuum. IEEE Trans. Parallel Distrib. Syst. 33(8), 1825–1840 (2022). https://doi.org/10.1109/TPDS.2021.3128037

    Article  Google Scholar 

  83. Li-rong, A., Kai, L.: Study on optimization technology of data management based on postgres-xl. Computer Technology and Development (2018)

  84. PL/ProxyTeam: PL/Proxy: Function-based sharding for PostgreSQL. https://plproxy.github.io/ (2022)

  85. Korotkov., A.: The NoSQL Postgres. https://youtu.be/70dBszaO67Af (2019)

  86. Spark, A.: Apache spark. Retrieved January 17(2018), 1 (2018)

    Google Scholar 

  87. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 36(4) (2015)

  88. CouchDB, A.: Apache couchdb. https://couchdb.apache.org

  89. Hulbert, A., Kunicki, T., Hughes, J.N., Fox, A.D., Eichelberger, C.N.: An experimental study of big spatial data systems. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2664–2671. IEEE (2016)

  90. Yu, J., Wu, J., Sarwat, M.: Geospark: A cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 1–4 (2015)

  91. Stonebraker, M., Frew, J., Gardels, K., Meredith, J.: The sequoia 2000 storage benchmark. ACM SIGMOD Record 22(2), 2–11 (1993)

    Article  Google Scholar 

  92. Patel, J., Yu, J., Kabra, N., Tufte, K., Nag, B., Burger, J., Hall, N., Ramasamy, K., Lueder, R., Ellmann, C., et al: Building a scaleable geo-spatial dbms: Technology, implementation, and evaluation. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp 336–347 (1997)

  93. Makris, A., Tserpes, K., Spiliopoulos, G., Anagnostopoulos, D.: Performance evaluation of mongodb and postgresql for spatio-temporal data. In: EDBT/ICDT Workshops (2019)

  94. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endow. 11(11), 1661–1673 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We also acknowledge the editorial committee’s support and all anonymous reviewers for their insightful comments and suggestions, which improved the content and presentation of this manuscript.

Funding

This work is supported by National Key Research and Development Program of China No. 2018YFB1404303 and ICT Grant CARCHB202017. When we work on this manuscript, we also received grant QHWX-KY-22002 from NUDT and Provincial Key Research and Development Program of JiangXi 012031379055.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyong Li worked on the full manuscript, Jingyun Gu wrote the Section 2-4, Guolong Tan and Wenjing Jiang prepared Section 5-6 and Figure 1-3, Ao Cui and Leiming Shu worked on the Section 1. Kaijun Ren, Haoyang Zhu and Jedi S. Shang participated in proofreading. Zichen Xu contributed to the proofreading work as well as Abstract and Section 7.

Corresponding authors

Correspondence to Haoyang Zhu or Zichen Xu.

Ethics declarations

Human and animal ethics

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

We declare that authors have no known competing interests or personal relationships that might be perceived to influence the discussion reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Spatiotemporal Data Management and Analytics for Recommend

Guest Editors: Shuo Shang, Xiangliang Zhang and Panos Kalnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gu, J., Tan, G. et al. Distributed processing of spatiotemporal ocean data: a survey. World Wide Web 26, 1481–1500 (2023). https://doi.org/10.1007/s11280-022-01067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01067-6

Keywords

Navigation