Skip to main content

Advertisement

Log in

Sequential-hierarchical attention network: Exploring the hierarchical intention feature in POI recommendation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Recommender system has attracted increasing attentions of many service providers, as it plays an important role in helping user filter irrelevant information. As an important application in daily life, point-of-interest (POI) recommendation system has become a powerful tool for assisting users make travel decisions, by modeling the impact of external factors on user behavior, such as time, geographical location, to predict future check-ins. However, the influence of intention, an important internal factor, on user check-in behavior has not been well explored. Existing research lacks methods for intention representing learning in POI recommendation, and has not explore the relationship between intention prediction and check-in behavior prediction. Motivated by this, this paper develops a novel sequential-hierarchical attention neural network based recommendation method (SH-Rec), which learns the hierarchy association of intention and sequential dependency of behavior and its interactions to improve user representation in POI recommendation. The main idea of the proposed SH-Rec is to describe user intentions from both hierarchical and sequential aspects using historical check-in sequence and side information, such as POI category attributes. Specifically, we design a novel sequential-hierarchical attention network to model the interaction of hierarchical intention features and sequential behavior features, by stacking several LSTM and self-attention layers. Besides, we model user’s behavior patterns by extracting sequential preference features using memory network. To utilize the contribution of intention learning in recommendation, we propose a weighted optimization function by employing multi-task learning strategy, to migrate knowledge from intention prediction to check-in prediction. Extensive experiments over three real-world datasets evaluate the better performance of the proposed model than the state-of-the-art methods in terms of various evaluation metrics. A series of ablation experiments and parameter experiments verify the better robustness and stability of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data can be accessed by request.

References

  1. Gao, Q., Wang, W., Zhang, K., Yang, X., Miao, C., Li, T.: Self-supervised representation learning for trip recommendation. Knowledge-Based Syst. 247, 108791 (2022). https://doi.org/10.1016/j.knosys.2022.108791

    Article  Google Scholar 

  2. Li, H., Wang, X., Zhang, Z., Ma, J., Cui, P., Zhu, W.: Intention-aware Sequential Recommendation with Structured Intent Transition. IEEE Trans. Knowl. Data Eng. 14,(2021). https://doi.org/10.1109/TKDE.2021.3050571

  3. Zhu, G., Wang, Y., Cao, J., Bu, Z., Yang, S., Liang, W., Liu, J.: Neural Attentive Travel package Recommendation via exploiting long-term and short-term behaviors. Knowledge-Based Syst. 211, 106511 (2021). https://doi.org/10.1016/j.knosys.2020.106511

    Article  Google Scholar 

  4. Werneck, H., Silva, N., Pereira, A., Carvalho, M., Bellogín, A., Martinez-Gil, J., Mourão, F., Rocha, L.: A reproducible POI recommendation framework: Works mapping and benchmark evaluation. Inf. Syst. 108, 102019 (2022). https://doi.org/10.1016/j.is.2022.102019

    Article  Google Scholar 

  5. Liu, X., Yang, Y., Xu, Y., Yang, F., Huang, Q., Wang, H.: Real-time POI recommendation via modeling long- and short-term user preferences. Neurocomputing 467, 454–464 (2022). https://doi.org/10.1016/j.neucom.2021.09.056

    Article  Google Scholar 

  6. Lyu, Z., Yang, M., Li, H.: Multi-view group representation learning for location-aware group recommendation. Inf. Sci. (Ny) 580, 495–509 (2021). https://doi.org/10.1016/j.ins.2021.08.086

    Article  MathSciNet  Google Scholar 

  7. Islam, M.A., Mohammad, M.M., Sarathi Das, S.S., Ali, M.E.: A survey on deep learning based Point-of-Interest (POI) recommendations. Neurocomputing. 472, 306–325 (2022). https://doi.org/10.1016/j.neucom.2021.05.114

    Article  Google Scholar 

  8. Wang, H., Li, P., Liu, Y., Shao, J.: Towards real-time demand-aware sequential POI recommendation. Inf. Sci. (Ny) 547, 482–497 (2021). https://doi.org/10.1016/j.ins.2020.08.088

    Article  MathSciNet  Google Scholar 

  9. Ying, J.J.C., Kuo, W.N., Tseng, V.S., Lu, E.H.C.: Mining user check-in behavior with a random walk for urban point-of-interest recommendations. ACM Trans. Intell. Syst. Technol. (2014). https://doi.org/10.1145/2523068

    Article  Google Scholar 

  10. Yang, K., Yang, Y., Gao, Q., Zhong, T., Wang, Y., Zhou, F.: Self-Explainable Next POI Recommendation. ACM Trans. Recomm. Syst. 2619–2623 (2024). https://doi.org/10.1145/3626772.3657967

  11. Wu, J., Hu, R., Li, D., Ren, L., Hu, W., Xiao, Y.: Where have you been: Dual spatiotemporal-aware user mobility modeling for missing check-in POI identification. Inf. Process. Manag. 59, 103030 (2022). https://doi.org/10.1016/j.ipm.2022.103030

    Article  Google Scholar 

  12. Ni, J., Huang, Z., Hu, Y., Lin, C.: A two-stage embedding model for recommendation with multimodal auxiliary information. Inf. Sci. (Ny) 582, 22–37 (2022). https://doi.org/10.1016/j.ins.2021.09.006

    Article  MathSciNet  Google Scholar 

  13. Cui, Z., Zhao, P., Hu, Z., Cai, X., Zhang, W., Chen, J.: An improved matrix factorization based model for many-objective optimization recommendation. Inf. Sci. (Ny) 579, 1–14 (2021). https://doi.org/10.1016/j.ins.2021.07.077

    Article  MathSciNet  Google Scholar 

  14. Aliannejadi, M., Rafailidis, D., Crestani, F.: A Joint Two-Phase Time-Sensitive Regularized Collaborative Ranking Model for Point of Interest Recommendation. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2019.2903463

    Article  Google Scholar 

  15. Wang, W., Chen, J., Wang, J., Chen, J., Gong, Z.: Geography-Aware Inductive Matrix Completion for Personalized Point-of-Interest Recommendation in Smart Cities. IEEE Internet Things J. (2020). https://doi.org/10.1109/JIOT.2019.2950418

    Article  Google Scholar 

  16. Sun, K., Qian, T., Chen, X., Zhong, M.: Context-aware seq2seq translation model for sequential recommendation. Inf. Sci. (Ny) 581, 60–72 (2021). https://doi.org/10.1016/j.ins.2021.09.001

    Article  MathSciNet  Google Scholar 

  17. Wu, C., Liu, S., Zeng, Z., Chen, M., Alhudhaif, A., Tang, X., Alenezi, F., Alnaim, N., Peng, X.: Knowledge graph-based multi-context-aware recommendation algorithm. Inf. Sci. (Ny) 595, 179–194 (2022). https://doi.org/10.1016/j.ins.2022.02.054

    Article  Google Scholar 

  18. Cai, Z., Yuan, G., Qiao, S., Qu, S., Zhang, Y., Bing, R.: FG-CF: Friends-aware graph collaborative filtering for POI recommendation. Neurocomputing 488, 107–119 (2022). https://doi.org/10.1016/j.neucom.2022.02.070

    Article  Google Scholar 

  19. Yu, D., Yu, T., Wu, Y., Liu, C.: Personalized recommendation of collective points-of-interest with preference and context awareness. Pattern Recognit. Lett. 153, 16–23 (2022). https://doi.org/10.1016/j.patrec.2021.11.018

    Article  Google Scholar 

  20. Rahmani, H.A., Deldjoo, Y., di Noia, T.: The role of context fusion on accuracy, beyond-accuracy, and fairness of point-of-interest recommendation systems. Expert Syst. Appl. 205, 117700 (2022). https://doi.org/10.1016/j.eswa.2022.117700

    Article  Google Scholar 

  21. Tanjim, M. M., Su, C., Benjamin, E., Hu, D., Hong, L., McAuley, J.:. Attentive sequential models of latent intent for next item recommendation. Web Conf. 2020 - Proc. World Wide Web Conf. WWW 2020. 2528–2534 (2020). https://doi.org/10.1145/3366423.3380002

  22. Cabeza-Ramírez, L.J., Sánchez-Cañizares, S.M., Santos-Roldán, L.M., Fuentes-García, F.J.: Impact of the perceived risk in influencers’ product recommendations on their followers’ purchase attitudes and intention. Technol. Forecast. Soc. Change. 184, 121997 (2022). https://doi.org/10.1016/j.techfore.2022.121997

  23. Volokhin, S., Agichtein, E.: Understanding music listening intents during daily activities with implications for contextual music recommendation. CHIIR 2018 - Proc. 2018 Conf. Hum. Inf. Interact. Retr. 2018-March, 313–316 (2018). https://doi.org/10.1145/3176349.3176885

  24. Zhu, N., Cao, J., Liu, Y., Yang, Y., Ying, H., Xiong, H.: Sequential modeling of hierarchical user intention and preference for next-item recommendation. WSDM 2020 - Proc. 13th Int. Conf. Web Search Data Min. 807–815 (2020). https://doi.org/10.1145/3336191.3371840

  25. Ma, G., Wang, Y., Zheng, X., Miao, X., Liang, Q.: A trust-aware latent space mapping approach for cross-domain recommendation. Neurocomputing 431, 100–110 (2021). https://doi.org/10.1016/j.neucom.2020.12.015

    Article  Google Scholar 

  26. Wang, C., Ma, W., Zhang, M., Chen, C., Liu, Y., Ma, S.: Toward Dynamic User Intention: Temporal Evolutionary Effects of Item Relations in Sequential Recommendation. ACM Trans. Inf. Syst. (2021). https://doi.org/10.1145/3432244

    Article  Google Scholar 

  27. Hua, S., Gan, M.: Intention-aware denoising graph neural network for session-based recommendation. Appl. Intell. 53, 23097–23112 (2023). https://doi.org/10.1007/s10489-023-04736-9

    Article  Google Scholar 

  28. Gan, M., Zhang, H.: VIGA: A variational graph autoencoder model to infer user interest representations for recommendation. Inf. Sci. (Ny). 640, 119039 (2023). https://doi.org/10.1016/j.ins.2023.119039

    Article  Google Scholar 

  29. Gan, M., Li, D., Zhang, X.: A disaggregated interest-extraction network for click-through rate prediction. Multimed. Tools Appl. 82, 27771–27793 (2023). https://doi.org/10.1007/s11042-023-14584-x

    Article  Google Scholar 

  30. Chen, C., Song, B., Guo, J., Zhang, T.: Multi-dimensional shared representation learning with graph fusion network for Session-based Recommendation. Inf. Fusion. 92, 205–215 (2023). https://doi.org/10.1016/j.inffus.2022.11.021

    Article  Google Scholar 

  31. Wang, C.: Towards Dynamic User Intention in Sequential Recommendation. WSDM 2021 - Proc. 14th ACM Int. Conf. Web Search Data Min. 1121–1122 (2021). https://doi.org/10.1145/3437963.3441674

  32. Guo, X., Shi, C., Liu, C.: Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation. Web Conf. 2020 - Proc. World Wide Web Conf. WWW 2020. 1127–1137 (2020). https://doi.org/10.1145/3366423.3380190

  33. Xu, Y., Zhu, Y., Yu, J.: Modeling Multiple Coexisting Category-Level Intentions for Next Item Recommendation. ACM Trans. Inf. Syst. (2021). https://doi.org/10.1145/3441642

    Article  Google Scholar 

  34. Meng, X., Lin, X., Wang, X., Zhou, X.: Intention-oriented itinerary recommendation through bridging physical trajectories and online social networks, KSII Trans. Internet Inf. Syst. (2012). https://doi.org/10.3837/tiis.2012.12.010

    Article  Google Scholar 

  35. Zhang, M., Guo, C., Jin, J., Pan, M., Fang, J.: Modeling Hierarchical Intents and Selective Current Interest for Session-Based Recommendation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 12713 LNAI, 411–422 (2021). https://doi.org/10.1007/978-3-030-75765-6_33

  36. Chen, Y., Liu, Z., Li, J., McAuley, J., Xiong, C.: Intent Contrastive Learning for Sequential Recommendation, WWW 2022 - Proc. ACM Web Conf. 2022, 2172–2182 (2022). https://doi.org/10.1145/3485447.3512090

    Article  Google Scholar 

  37. Chen, W., He, M., Ni, Y., Pan, W., Chen, L., Ming, Z.: Global and Personalized Graphs for Heterogeneous Sequential Recommendation by Learning Behavior Transitions and User Intentions. RecSys 2022 - Proc. 16th ACM Conf. Recomm. Syst. 268–277 (2022). https://doi.org/10.1145/3523227.3546761

  38. Wang, X., Huang, T., Wang, D., Yuan, Y., Liu, Z., He, X., Chua, T.S.: Learning intents behind interactions with knowledge graph for recommendation. Web Conf. 2021 - Proc. World Wide Web Conf. WWW 2021. 878–887 (2021). https://doi.org/10.1145/3442381.3450133

  39. Fan, S., Shi, C., Hu, L., Zhu, J., Ma, B., Han, X., Li, Y.: Metapath-guided heterogeneous graph neural network for intent recommendation. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2478–2486 (2019). https://doi.org/10.1145/3292500.3330673

  40. Lichman, M., Smyth, P.: Prediction of sparse user-item consumption rates with zero-inflated poisson regression. Web Conf. 2018 - Proc. World Wide Web Conf. WWW 2018. 2, 719–728 (2018). https://doi.org/10.1145/3178876.3186153

  41. Shi, M., Shen, D., Kou, Y., Nie, T., Yu, G.: Attentional Memory Network with Correlation-based Embedding for time-aware POI recommendation. Knowledge-Based Syst. (2021). https://doi.org/10.1016/j.knosys.2021.106747

    Article  Google Scholar 

  42. Zhang, H., Gan, M., Sun, X.: Incorporating Memory-Based Preferences and Point-of-Interest Stickiness into Recommendations in Location-Based Social Networks. ISPRS Int. J. Geo-Information. 10, 36 (2021). https://doi.org/10.3390/ijgi10010036

    Article  Google Scholar 

  43. Zheng, C., Tao, D., Wang, J., Cui, L., Ruan, W., Yu, S.: Memory Augmented Hierarchical Attention Network for Next Point-of-Interest Recommendation. IEEE Trans. Comput. Soc. Syst. (2021). https://doi.org/10.1109/TCSS.2020.3036661

    Article  Google Scholar 

  44. Visa, M., & Patel, D.: Attention based Long-Short Term Memory Model for Product Recommendations with Multiple Timesteps. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 605-612. IEEE, Erode, India (2021). https://doi.org/10.1109/ICCMC51019.2021.9418325.

  45. Liu, W., Lin, Z., Zhu, H., Wang, J., Sangaiah, A.K.: Attention-Based Adaptive Memory Network for Recommendation with Review and Rating. IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.2997115

    Article  Google Scholar 

  46. Walker, J., Zhang, F., Zhong, T., Zhou, F., Baagyere, E.Y.: Variational cold-start resistant recommendation. Inf. Sci. (Ny) 605, 267–285 (2022). https://doi.org/10.1016/j.ins.2022.05.025

    Article  Google Scholar 

  47. Gu, X., Zhao, H., Jian, L.: Sequence neural network for recommendation with multi-feature fusion. Expert Syst. Appl. 210, 118459 (2022). https://doi.org/10.1016/j.eswa.2022.118459

    Article  Google Scholar 

  48. Gan, M., Ma, Y.: DeepInteract: Multi-view features interactive learning for sequential recommendation. Expert Syst. Appl. 204, 117305 (2022). https://doi.org/10.1016/j.eswa.2022.117305

    Article  Google Scholar 

  49. Zhang, L., Sun, Z., Zhang, J., Kloeden, H., Klanner, F.: Modeling hierarchical category transition for next POI recommendation with uncertain check-ins. Inf. Sci. (Ny) 515, 169–190 (2020). https://doi.org/10.1016/j.ins.2019.12.006

    Article  Google Scholar 

  50. Huo, Y., Chen, B., Tang, J., Zeng, Y.: Privacy-preserving point-of-interest recommendation based on geographical and social influence. Inf. Sci. (Ny) 543, 202–218 (2021). https://doi.org/10.1016/j.ins.2020.07.046

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 72301182, 72271024, 71871019, 71471016).

This work was supported by the Capital University of Economics and Business Newly Recruited Young Teachers' Research Start-up Fund Project (No. XRZ2023027).

Author information

Authors and Affiliations

Authors

Contributions

Yingxue Ma carried out the experiment and result analysis, wrote the main manuscript text, prepared the figures and tables. Mingxin Gan directed the design of experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mingxin Gan.

Ethics declarations

Ethical approval

This declaration is “not applicable”.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Gan, M. Sequential-hierarchical attention network: Exploring the hierarchical intention feature in POI recommendation. World Wide Web 27, 67 (2024). https://doi.org/10.1007/s11280-024-01295-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11280-024-01295-y

Keywords

Navigation