Skip to main content

Advertisement

Log in

A hybrid structural feature extraction-based intelligent predictive approach for image registration

  • S.I. : Multifaceted Intelligent Computing Systems (MICS)
  • Published:
Innovations in Systems and Software Engineering Aims and scope Submit manuscript

Abstract

Based on characteristics or similarity metrics, image registration aligns various images acquired at different time frames or from different points of view. This is a common issue in image processing applications where it is necessary to do a parallel or collaborative analysis of two or more images of the same scene captured by different sensors, or images captured by the same sensor at various times. In this paper, we present an intelligent framework that uses a proposed hybrid structural feature extraction technique to estimate the input image’s transformation parameters using a ground truth image. This hybrid feature extraction technique extracts a few potential structural features as well as the object’s shape. The proposed technique’s effectiveness is compared with various prior state-of-the-art methods on publicly available image databases like SAR (synthetic aperture radar), medical, and standard benchmark images. The results of the parameter estimation experiments reveal that this hybrid feature extraction technique can reduce incorrect image registration parameter predictions in terms of mean square error, peak signal-to-noise ratio, root mean square error, average absolute intensity difference, and normalised cross-correlation coefficient and construct a good intelligent predictive framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fonseca LMG, Manjunath BS (1996) Registration techniques for multisensor remotely sensed imagery. Photogramm Eng Remote Sens 562:1049–1056

    Google Scholar 

  2. Li H, Manjunath BS, Mitra SK (1995) A contour based approach to multisensor image registration. IEEE Trans Image Process 4:320–334

    Article  Google Scholar 

  3. Brown LG (1992) A survey of image registration techniques. Comput Surv 24:325–376

    Article  Google Scholar 

  4. Cideciyan AV, Jacobson SG, Kemp CM, Knighton RW, Nagel JH (1992) Registration of high resolution images of the retina. Proc SPIE Med Imaging VI: Image Process 1652:310–322

    Article  Google Scholar 

  5. Cole-Rhodes AA, Johnson KL, LeMoigne J, Zavorin I (2003) Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans Image Process 12:1495–1511

    Article  MathSciNet  Google Scholar 

  6. Goncalves H, Corte-Real L, Goncalves JA (2011) Automatic image registration through image segmentation and sift. IEEE Trans Geosci Remote Sens 97:2589–2600

    Article  Google Scholar 

  7. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

  8. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond 207:187–217

    Google Scholar 

  9. Moss S, Hancock ER (1997) Multiple line-template matching with em algorithm. Pattern Recognit Lett 18:1283–1292

    Article  Google Scholar 

  10. Shin D, Pollard JK, Muller JP (1997) Accurate geometric correction of atsr images. IEEE Trans Geosci Remote Sens 35:997–1006

    Article  Google Scholar 

  11. Banerjee S, Mukherjee DDMDP (1995) Point landmarks for registration of ct and nmr images. Pattern Recognit Lett 16:1033–1042

    Article  Google Scholar 

  12. Bhattacharya D, Sinha S (1997) Invariance of stereo images via theory of complex moments. Pattern Recognit 30:1373–1386

    Article  Google Scholar 

  13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection, pp 886–8931

  14. Luo Z, Chen J, Takiguchi T, Ariki Y (2015) Rotation-invariant histograms of oriented gradients for local patch robust representation, pp 196–199. https://doi.org/10.1109/APSIPA.2015.7415502

  15. Candes EJ, Donoho DL (2000) Curvelets–a surprisingly effective nonadaptive representation for objects with edges. Vanderbilt University Press, Nashville, pp 105–120

    Google Scholar 

  16. Candes EJ (1999) Harmonic analysis of neural networks. Appl Comput Harmonic Anal 6:197–218

    Article  MathSciNet  Google Scholar 

  17. Patil AA, Singhai R, Singhai J (2010) Curvelet transform based super-resolution using sub-pixel image registration. In: 2nd computer science and electronic engineering conference (CEEC)

  18. Candes EJ, Donoho DL (1999) Ridgelets: the key to higher-dimensional intermittency. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357:2495–2509

    Article  MathSciNet  Google Scholar 

  19. Nambiar R, Desai U, Shetty V (2014) Medical image fusion analysis using curvelet transform. In: International conference on advanced computing, communication and information sciences, pp 1–12

  20. Veerasundari R, Umamaheswari S (2016) Enhanced satellite image registration and fusion using 2d curvelet transform. In: 7th Annual international conference on computer science education innovation and technology

  21. Deepali B, Dimple C (2016) Nsct based spine image fusion. Int J Ind Electron Electr Eng 4

  22. Tomasi C, Kanade T (1991) Detection and tracking of point features. Technical Report CMU, pp 91–132

  23. Nalina S, Mal A, Vani KS, Subhalakshmi K (2014) Image based velocity estimation by feature extraction and sub-pixel image matching. Int J Eng Res Technol 3

  24. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European conference on computer vision, vol 1

  25. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 5:91–110

    Article  Google Scholar 

  26. Bay H, Tuytelaars T, Gool LV (2006) Surf: speeded up robust features. In: European conference on computer vision, pp 404–417

  27. Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: Binary robust independent elementary features. In: European conference on computer vision

  28. Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: and efficient alternative to sift or surf. In: IEEE international conference on computer vision

  29. Lu Y, Gao K, Zhang T, Xu T (2018) A novel image registration approach via combining local features and geometric invariants. PLoS ONE 13:e0190383

    Article  Google Scholar 

  30. Wang K, Wang H, Wu M, Wang Z, Liu J (2018) A method for spectral image registration based on feature maximum submatr. EURASIP J Image Video Process 140:1

    Google Scholar 

  31. Dellinger F, Delon J, Gousseau Y, Michel J, Tupin F (2015) Sift: a sift-like algorithm for sar images. IEEE Trans Geosci Remote Sens 53:453–466

    Article  Google Scholar 

  32. Dong J, Soatto S (2015) Domain-size pooling in local descriptors: Dsp-sift. In: IEEE conference on computer vision and pattern recognition (CVPR)

  33. Ke Y, Sukthankar R (2004) Pca-sift: a more distinctive representation for local image descriptors. In: IEEE conference on computer vision and pattern recognition (CVPR)

  34. Sedaghat A, Mokhtarzade M, Ebadi H (2015) Uniform robust scale-invariant feature matching for optical remote sensing images. IEEE Trans Geosci Remote Sens 53:5283–5293

    Article  Google Scholar 

  35. Teke M, Temizel A (2010) Multi-spectral satellite image registration using scale-restricted surf ICPR 2010, pp 2310–2313

  36. Gesto-Diaz M, Tombari F, Gonzalez-Aguilera D, Lopez-Fernandez L, Rodriguez-Gonzalvez P (2017) Feature matching evaluation for multimodal correspondence. ISPRS J Photogramm Remote Sens 129:179–188

    Article  Google Scholar 

  37. Kelman A, Sofka M, Stewart CV (2007) Keypoint descriptors for matching across multiple image modalities and non-linear intensity variations. CVPR 2007:3257–3263

    Google Scholar 

  38. Murphy JM, Le Moigne J, Harding DJ (2016) Automatic image registration of multimodal remotely sensed data with global shearlet features. IEEE Trans Geosci Remote Sens 54:1685–1704

    Article  Google Scholar 

  39. Rodriguez Salas R, Dokladal P, Dokladalova E (2021) Rotation invariant networks for image classification for hpc and embedded systems. Electronics 10:139. https://doi.org/10.3390/electronics10020139

    Article  Google Scholar 

  40. Sifre L, Mallat S (2013) Rotation, scaling and deformation invariant scattering for texture discrimination, pp 1233–1240. https://doi.org/10.1109/CVPR.2013.163

  41. Marcos D, Volpi M, Komodakis N, Tuia D (2017) Rotation equivariant vector field networks, pp 5058–5067. https://doi.org/10.1109/ICCV.2017.540

  42. Zhou Y, Ye Q, Qiu Q, Jiao J (2017) Oriented response networks, pp 4961–4970. https://doi.org/10.1109/CVPR.2017.527

  43. Ravanbakhsh M, Fraser CS (2013) A comparative study of dem registration approaches. J Spatial Sci 58:79–89

    Article  Google Scholar 

  44. Zavorin I, Le Moigne J (2005) Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery. IEEE Trans Image Process 14:770–782

  45. Ahmed DT, Singh D, Singh D, Raman B, Subramanian R (2014) Application of klt (kanade-lucas-tomasi) tracker for hotspot observation

  46. Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2017) Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55:3965–3981

  47. http://www.med.harvard.edu/aanlib/home.html. (2004)

  48. Willmott CJ, Matsuura K (2005) of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  49. Mousavi Kahaki SM, Nordin MJ, Ashtari AH, Zahra SJ (2016) Invariant feature matching for image registration application based on new dissimilarity of spatial features. PLoS ONE 11:e0149710

    Article  Google Scholar 

  50. Daneshvar S, Ghassemian H (2005) A hybrid algorithm for medical image registration. Conf Proc IEEE Eng Med Biol Soc 2005:3272

    Google Scholar 

  51. Chakravarti IM, Laha RG, Roy J (1967) Handbook of methods of applied statistics, vol I. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, J., Chowdhury, A.R., Dasgupta, K. et al. A hybrid structural feature extraction-based intelligent predictive approach for image registration. Innovations Syst Softw Eng 20, 643–651 (2024). https://doi.org/10.1007/s11334-022-00436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11334-022-00436-8

Keywords

Navigation