Skip to main content
Log in

The null-space-based behavioral control for autonomous robotic systems

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper a new behavior-based approach for the control of autonomous robotic systems is proposed. The so-called null-space-based behavioral (NSB) control differs from the other existing methods in the behavioral coordination, i.e., in the way the outputs of the single elementary behaviors are combined to compose a complex behavior. The proposed approach is compared with the main existing approaches while two experimental case studies, performed with a Khepera II mobile robot, are reported to validate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.k-team.com/ . K-Team

  2. Antonelli G, Arrichiello F, Chiaverini S (2005) Experimental kinematic comparison of behavioral approaches for mobile robots. In: Proceedings 16th IFAC world congress, Prague

  3. Antonelli G, Arrichiello F, Chiaverini S (2005) The null-space-based behavioral control for soccer-playing mobile robots. In: Proceedings 2005 IEEE/ASME international conference on advanced intelligent mechatronics, Monterey, pp 1257–1262

  4. Antonelli G, Chiaverini S (2003) Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems. IEEE Trans Fuzzy Systems 11(1):109–120

    Article  Google Scholar 

  5. Antonelli G, Chiaverini S (2003) Kinematic control of a platoon of autonomous vehicles. In: Proceedings 2003 IEEE international conference on robotics and automation, Taipei pp 1464–1469

  6. Antonelli G, Chiaverini S (2004) Fault tolerant kinematic control of platoons of autonomous vehicles. In: Proceedings 2004 IEEE international conference on robotics and automation, New Orleans, pp 3313–3318

  7. Arkin RC (1989) Motor schema based mobile robot navigation. Int J Robot Res 8(4):92–112

    Article  Google Scholar 

  8. Arkin RC (1998). Behavior-based robotics. The MIT Press, Cambridge

    Google Scholar 

  9. Balch T, Arkin RC (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Automation 14(6):926–939

    Article  Google Scholar 

  10. Bishop BE (2003) On the use of redundant manipulator techniques for control of platoons of cooperating robotic vehicles. IEEE Trans Systems Man Cybern 33(5):608–615

    Article  Google Scholar 

  11. Bishop BE, Stilwell DJ (2001) On the application of redundant manipulator techniques to the control of platoons of autonomous vehicles. In: Proceedings 2001 IEEE international conference on control applications, México City, pp 823–828

  12. Borenstein J, Koren Y (1989) Real-time obstacle avoidance for fast mobile robots. IEEE Trans Systems Man Cybern 19:1179–1187

    Article  Google Scholar 

  13. Brooks RA (1986) A robust layered control system for a mobile robot. IEEE J Robot Automation 2:14–23

    MathSciNet  Google Scholar 

  14. Chiacchio P, Chiaverini S, Sciavicco L, Siciliano B (1991) Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. Int J Robot Res 10(4):410–425

    Article  Google Scholar 

  15. Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans Robot Automation 13(3): 398–410

    Article  Google Scholar 

  16. De Luca A, Oriolo G, Vendittelli M (2000). Stabilization of the unicycle via dynamic feedback linearization. In: 6th IFAC symposium on robot control, Wien, pp 397–402

  17. Gat E, Desai R, Ivlev R, Loch J, Miller DP (1994) Behavior control for robotic exploration of planetary surfaces. IEEE Trans Robot Automation 10(4):490–503

    Article  Google Scholar 

  18. Langer D, Rosenblatt JK, Hebert M (1994) A behavior-based system for off-road navigation. IEEE Trans Robot Automation 10(6):776–783

    Article  Google Scholar 

  19. Maciejewski AA (1988) Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. J Robot Systems 5(6):527–552

    Article  Google Scholar 

  20. Mali AD (2002) On the behavior-based architectures of autonomous agency. IEEE Trans Systems Man Cybern 32(3):231–242

    Article  Google Scholar 

  21. Mataric MJ (1997) Behavior-based control: Examples from navigation, learning, and group behavior. J Exp Theor Artificial Intell 9(2–3):323–336

    Article  Google Scholar 

  22. Myung-Jin J, Arai F, Hasegawa Y, Fukuda T (2003) Mood and task coordination of home robots. In: Proceedings 2003 IEEE international conference on robotics and automation, Taipei, pp 250–255

  23. Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. Int J Robot Res 6(2):3–15

    Article  Google Scholar 

  24. Park J, Choi Y, Chung WK, Youm Y (2001) Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators. In: Proceedings 2001 IEEE international conference on robotics and automation, Seoul, pp 4041–4047

  25. Parker LE (1996) On the design of behavior-based multi-robot teams. Adva Robot 10(6):547–578

    Google Scholar 

  26. Pirjanian P (2000) Multiple objective behavior-based control. Robot Auto Systems 31(1–2):53–60

    Article  Google Scholar 

  27. Rybski PE, Papanikolopoulos NP, Stoter SA, Krantz DG, Yein KB, Gini M, Voyles R, Hougen DF, Nelson B, Ericksn MD (2000) Enlisting rangers and scouts for reconnaissance and surveillance. IEEE Robot Auto Magaz 7(4):14–24

    Article  Google Scholar 

  28. Saffiotti A, Wasik Z (2003) A hierarchical behavior-based approach to manipulation tasks. In: Proceedings of 2003 IEEE international conference on robotics and automation, Taipei, pp 2780–2785

  29. Scheutz M, Andronache V (2004) Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems. IEEE Trans Systems Man Cybern 34(6):2377–2395

    Article  Google Scholar 

  30. Siciliano B (1990) Kinematic control of redundant robot manipulators: a tutorial. J Intell Robot Systems 3:201–212

    Article  Google Scholar 

  31. Yang Y, Brock O, Grupen RA (2003) Exploiting redundancy to implement multi-objective behavior. In: Proceedings 2003 IEEE international conference on robotics and automation, Taipei, pp 3385–3390

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Arrichiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, G., Arrichiello, F. & Chiaverini, S. The null-space-based behavioral control for autonomous robotic systems. Intel Serv Robotics 1, 27–39 (2008). https://doi.org/10.1007/s11370-007-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-007-0002-3

Keywords

Navigation