Skip to main content
Log in

Scene recognition with bag of visual nouns and prepositions

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

The loop closure problem is central to topological simultaneous localization and mapping (SLAM); by associating features between distant portions of a trajectory, the odometry error that has accumulated between two observations can be eliminated and a more consistent map can be built. Bayesian pattern recognition techniques such as bag of visual words (BoVW) have recently shown outstanding results in solving the loop closure problem completely in image space using very simple, inexpensive cameras, without the requirement for highly accurate metric information, 3D reconstruction, or camera calibration. In this paper, a modified BoVW descriptor that incorporates simple geometric relationships within an image is used with the fast appearance-based mapping (FAB-MAP) algorithm. In direct comparisons with the traditional BoVW descriptor, an improved recall rate is observed with an acceptable increase in computational time. The proposal of a BoVW-compatible descriptor and the use of the proposed descriptor with a well-known BoVW classifier demonstrate the ability of the BoVW metaphor to be generalized, which could pave the way for more various BoVW descriptors in the same way that many individual visual feature descriptors exist within the computer vision community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thrun S (2001) Probabilistic robotics. MIT Press, Cambridge

    Google Scholar 

  2. Bradski G (2000) OpenCV. Dr Dobb’s J Softw Tools

  3. Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  4. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. Int Conf Comput Vis 2:1470–1477. doi:10.1109/ICCV.2003.1238663

    Google Scholar 

  5. Cummins M, Newman P (2008) FAB-MAP: probabilistic localization and mapping in the space of appearance. Int J Robot Res 27(6):647–665. doi:10.1177/0278364908090961

    Article  Google Scholar 

  6. Cummins M, Newman P (2010) Appearance-only SLAM at large scale with FAB-MAP 2.0. Int J Robot Res 30(9):1100–1123. doi:10.1177/0278364910385483

    Article  Google Scholar 

  7. Pérez J, Caballero F, Merino L (2015) Enhanced Monte Carlo localization with visual place recognition for robust robot localization. J Intell Robot Syst 1–16. doi:10.1007/s10846-015-0198-y

  8. Yang C, Shengnan C, Jingdong W, Quan L (2014) Low-rank sift: an affine invariant feature for place recognition. Comput Res Repos 1–5. arXiv:1408.1688

  9. Sünderhauf N, Dayoub F, Shirazi S, Upcroft B, Milford M (2015) On the performance of ConvNet features for place recognition. Comput Res Repos 1–8. arXiv:1501.04158

  10. Cao J, Chen T, Fan J (2014) Fast online learning algorithm for landmark recognition based on BoW framework. IEEE Trans Ind Appl 1163–1168. doi:10.1109/ICIEA.2014.6931341

  11. Johns E, Yang G (2014) Pairwise probabilistic voting: fast place recognition without RANSAC. Comput Vis ECCV 505–519. doi:10.1007/978-3-319-10605-2_33

  12. Bolovinou A, Pratikakis I, Perantonis S (2012) Bag of spatio-visual words for context inference in scene classification. Pattern Recognit 46(3):1039–1053. doi:10.1016/j.patcog.2012.07.024

    Article  Google Scholar 

  13. Duda R, Hart P, Stork D (2000) Pattern classification. Wiley, New York

    Google Scholar 

  14. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. Comput Vis ECCV 404–417. doi:10.1007/11744023_32

  15. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 602(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  16. Rublee E, Rabaud V (2011) ORB: an efficient alternative to SIFT or SURF. Comput Vis ECCV 2564–2571. doi:10.1109/ICCV.2011.6126544

  17. Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. Comput Vis ECCV IV:778–792. doi:10.1007/978-3-642-15561-1_56

  18. Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge

  19. Chow C, Lee C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Inf Theory 14(3):462–467. doi:10.1109/TIT.1968.1054142

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the MOTIE under the Industrial Foundation Technology Development Program supervised by KEIT (No. 10051155) and by Basic Science Research Program through the NRF funded by MSIP (No. 2007-0056094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Bok Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stalbaum, J., Chae, HW. & Song, JB. Scene recognition with bag of visual nouns and prepositions. Intel Serv Robotics 8, 115–125 (2015). https://doi.org/10.1007/s11370-015-0167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-015-0167-0

Keywords

Navigation