Skip to main content

Advertisement

Log in

A human–robot interface using particle filter, Kalman filter, and over-damping method

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper presents a novel human–manipulator interface which copies the hand motion to control a manipulator. In the proposed interface, an inertial measurement unit is used to measure the orientation of the human hand, and a 3D camera is employed to locate the human hand using the Camshift algorithm. Although the position and the orientation of the human can be obtained from two sensors, the measurement errors increase over time due to the noise of the devices and the tracking errors. Therefore, particle filter and Kalman filter are used to estimate the position and the orientation of the human hand. Due to the limitations of the perceptive and the motor, human operator cannot accomplish the high-precision manipulation without any assistance. An over-damping method is employed to assist the operator to improve the accuracy and reliability in determining the postures of the manipulator. The human–manipulator interface system was experimentally tested in a lab environment, and the results indicate that such an interface can successfully control a robot manipulator even when the operator is not an expert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cho K-B, Lee B-H (2012) Intelligent lead: a novel HRI sensor for guide robots. Sensors 12(6):8301–8318

    Article  Google Scholar 

  2. Mitsantisuk C, Katsura S, Ohishi K (2010) Force control of human-robot interaction using twin direct-drive motor system based on modal space design. IEEE Trans Ind Electron 57(4):1338–1392

    Article  Google Scholar 

  3. Ando T, Tsukahara R, Seki M (2012) A hapic interface “Force Blinker 2” for navigation of the visually impaired. IEEE Trans Ind Electron 59(11):4112–4119

    Article  Google Scholar 

  4. Hirche S, Buss M (2012) Human-oriented control for haptic teleoperation. Proc IEEE 100(3):623–647

    Article  Google Scholar 

  5. Kiguchi K, Kariya S, Watanabe K (2003) An exoskeletal robot for human elbow motion support-sensor fusion, adaptation, and control. IEEE Trans Syst Man Cybern Part B Cybern 31(3):353–361

    Article  Google Scholar 

  6. Kofman J, Wu X, Luu T et al (2005) Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans Ind Electr 52(5):1206–1219

  7. Siddharth V (2004) Vision-based markerless 3D human-arm tracking. M.A.Sc. Thesis, Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada, pp 77–165

  8. Suau X, Ruiz-Hidalgo J, Casas JR (2012) Real-time head and hand tracking based on 2.5D Data. IEEE Trans Multim 14(3):575–585

    Article  Google Scholar 

  9. Ma Y, Mao ZH, Jia W et al (2011) Magnetic hand tracking for human-computer interface. IEEE Trans Magn 47(5):970–973

    Article  Google Scholar 

  10. Khezri M, Jahed M (2011) A neuro-fuzzy inference system for semg-based identification of hand motion commands. IEEE Trans Ind Electron 58(5):1952–1960

    Article  Google Scholar 

  11. Varkonyi-Koczy AR, Tusor B (2011) Human-computer interaction for smart environment applications using fuzzy hand posture and gesture models. IEEE Trans Instrum Meas 60(5):1505–1514

    Article  Google Scholar 

  12. Ueda E, Matsumot Y, Imai M et al (2003) A hand-pose estimation for vision-based human interfaces. IEEE Trans Ind Electron 50(4):676–684

    Article  Google Scholar 

  13. Zhang J, Knoll A (2003) A two-arm situated artificial communicator for human-robot cooperative assembly. IEEE Trans Ind Electron 50(4):651–658

    Article  Google Scholar 

  14. Du G, Zhang P (2015) A markerless human-robot interface using particle filter and Kalman filter for dual robots. IEEE Trans Ind Electron 62(4):2257–2264

    Article  Google Scholar 

  15. Kofman J, Verma S, Xianghai W (2007) Robot- manipulator teleoperation by markerless vision-based hand-arm tracking. Int J Optomech 1(3):331–357

    Article  Google Scholar 

  16. Guanglong D, Zhang P, Li D (2014) Human-manipulator interface based on multisensory process via Kalman filters. IEEE Trans Ind Electron 61(10):5411–5418

    Article  Google Scholar 

  17. Semwal, Vijay B, Gora Chand N (2015) Toward Developing a computational model for bipedal push recovery-a brief. Sens J IEEE 15(4):2021–2022

  18. Semwal, Vijay B (2015) Biologically-inspired push recovery capable bipedal locomotion modeling through hybrid automata. Robot Auton Syst 70:181–190

  19. Hidayatullah P (2011) CAMSHIFT improvement on multi-hue object and multi-object tracking. 3rd European Workshop on Visual Information Processing. Paris 2011, pp 143–148

  20. Zhang P, Guanglong D, Li D (2014) A novel human-robot interface using hybrid sensors with Kalman filters. Ind Robot 41(6):585–595

    Article  Google Scholar 

  21. Guanglong D, Zhang P (2014) Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters. IEEE Trans Ind Electron 61(12):6852–6859

    Article  Google Scholar 

  22. Xiaoping Y, Eric R B, Robert B M (2008) A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. IEEE Trans Instrum Meas 57(3):638–650

    Article  Google Scholar 

  23. Man Ho K, Suk L, Kyung Chang L (2010) Kalman predictive redundancy system for fault tolerance of safety-critical system. IEEE Trans Ind Inf 6(1):46–53

    Article  Google Scholar 

  24. Kalman RE (1960) A New approach to linear filtering and prediction problems. ASME J Basic Eng 82(1):35–45

    Article  Google Scholar 

  25. Kit Yan C, Yiu CKF, Dillon (2012) Enhancement of speech recognitions for control automation using an intelligent particle swarm optimization. IEEE Trans Ind Inf 8(4):869–879

  26. Liu JS, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc 93(443):1032–1044

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan C, Druzdzel MJ (2007) Theoretical analysis and practical insightson importance sampling in Bayesian networks. Int J Approx Reason 46(2):320–333

    Article  MathSciNet  MATH  Google Scholar 

  28. Won SP, Melek WW, Golnaraghi F (2011) Fastening tool tracking system using a Kalman filter and particle filter combination. Meas Sci Technol 22:108–119

    Article  Google Scholar 

  29. Won SP, Melek WW, Golnaraghi F (2009) A fastening tool trackingsystem using an IMU and a position sensor with Kalman filters and a fuzzyexpert system. IEEE Trans Ind Electron 56(5):1782–1792

    Article  Google Scholar 

  30. Antonelli G, Chiaverini S, Fusco G (2003) A new on-line algorithm for inverse kinematics of robot manipulators ensuring path tracking capability under joint limits. IEEE Trans Robot Autom 19(1):162–167

    Article  Google Scholar 

  31. Glas DF, Kanda T, Hagita N (2012) Teleoperation of multiple social robots. IEEE Trans Syst Man Cybern 42(3):530–544

    Article  Google Scholar 

  32. Marin R, Sanz PJ, Wirz R (2005) A multimodal interface to control a robot arm via the web: a case study on remote programming. IEEE Trans Ind Electron 52(6):1506–1521

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by “National Undergraduate Innovative and Entrepreneurial Training Program (No:201610561127)” and “National Natural Science Foundation of China (Grant No. 61403145)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Lei, Y., Shao, H. et al. A human–robot interface using particle filter, Kalman filter, and over-damping method. Intel Serv Robotics 9, 323–332 (2016). https://doi.org/10.1007/s11370-016-0202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-016-0202-9

Keywords

Navigation