Skip to main content
Log in

Motion planning and control for endoscopic operations of continuum manipulators

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper presents a novel coordinated motion planning method for solving the inverse kinematic problems of endoscopic operations of continuum manipulators. For safe and stable control of the continuum manipulators in complex constrained environments, a saturated feedback controller is proposed. The global stability of the controller is analyzed. Some numerical simulations also demonstrate that the proposed motion planning method and the control approach are feasible under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong X, Axinte D, Palmer D, Cobos S, Raffles M, Rabani A, Kell J (2017) Development of a slender continuum robots system for on-wing inspection/repair of gas turbine engines. Robot Comput Integr Manuf 44:218–229

    Article  Google Scholar 

  2. Ding Jienan, Goldman Roger E, Kai Xu, Allen Peter K, Fowler Dennis L, Simaan Nabil (2013) Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans Mechatron 18(5):1612–1624

    Article  Google Scholar 

  3. Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Rob 22(1):43–55

    Article  Google Scholar 

  4. Gravahne Ian A, Walker ID (2002) Manipulability, force and compliance analysis for planar continuum manipulators. IEEE Trans Robot Autom 18(3):263–273

    Article  Google Scholar 

  5. Gao Anzhu, Murphy Ryan J, Liu Hao, Iordachita Iulian I, Armand Mehran (2017) Mechanical model of dexterous continuum manipulators with compliant joints and tendon/external force interactions. IEEE/ASME Trans Mechatron 22(1):465–475

    Article  Google Scholar 

  6. Camarillo David B, Milne Christopher F, Carlson Christopher R, Zinn Michael R, Salisbury J Kenneth (2008) Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Rob 24(6):1262–1273

    Article  Google Scholar 

  7. Webster RJ III, Romano JM, Cowan NJ (2009) Mechanics of precurved-tube continuum robots. IEEE Trans Rob 25(1):67–78

    Article  Google Scholar 

  8. Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Rob 30(4):880–889

    Article  Google Scholar 

  9. Yip MC, Camarillo DB (2016) Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot Autom Lett 1(2):844–851

    Article  Google Scholar 

  10. Webster RJ III, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29(13):1661–1683

    Article  Google Scholar 

  11. Yang J, Pitarch EP, Potratz J, Beck S, Abdel-Malek K (2006) Synthesis and analysis of a flexible elephant trunk robot. Adv Robot 20(6):631–659

    Article  Google Scholar 

  12. Wang Y, Chirikjian GS (2003) Workspace generation of hyper-redundant manipulators as a diffusion process on SE(N). IEEE Trans Robot Autom 20(3):399–408

    Article  Google Scholar 

  13. Li Jinglin, Xiao Jing (2016) Progressive planning of continuum grasping in cluttered space. IEEE Trans Rob 32(3):707–716

    Article  Google Scholar 

  14. Siciliano B (1990) Kinematic control of redundant robot manipulators: a tutorial. J Intell Rob Syst 3(3):201–212

    Article  Google Scholar 

  15. Kai Xu, Simaan Nabil (2010) Analytical formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. ASME J Mech Robot 2(1):298–320

    Google Scholar 

  16. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  17. Lewis Frank L, Zhang H, Hengster-Movric K, Das A (2014) Cooperative control of multi-agent systems. Springer, London

    Book  MATH  Google Scholar 

  18. Chen J, Cao X, Cheng P, Xiao Y, Sun Y (2010) Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Trans Ind Electron 57(12):4219–4230

    Article  Google Scholar 

  19. Ren W, Cao C (2011) Distributed coordination of multi-agent networks: emergent problems, models, and issues. Springer, London

    Book  MATH  Google Scholar 

  20. Laumond Jean-Paul (1998) Robot motion planning and control. Springer, London

    Book  Google Scholar 

  21. He G, Chen R, Zhang Y (2017) Globally stabilizing a class of underactuated mechanical systems on the basis of finite-time stabilizing observer. J Intell Rob Syst 86:353–366

    Article  Google Scholar 

  22. Sepulchre R, Jankovic M, Kokotovic PV (1997) Constructive nonlinear control. Springer, London

    Book  MATH  Google Scholar 

  23. Olfati-Saber R (2001) Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Massachusetts Institute of Technology, Doctor Dissertation

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Beijing under Grants L172001, 3172009 and 16L00001 and the National Natural Science Foundation of China under Grant 51775002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G. Motion planning and control for endoscopic operations of continuum manipulators. Intel Serv Robotics 12, 159–166 (2019). https://doi.org/10.1007/s11370-018-00269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-00269-0

Keywords

Navigation