Skip to main content
Log in

Development of an interactive game-based mirror image hand rehabilitation system

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

To develop a hand rehabilitation device, the patient-specific heterogeneity of physical ailments must be considered in the design process to provide optimized rehabilitation. In this paper, we suggest a low-cost customized manufacturing process of a hand rehabilitation system. We first extract the length and size of the fingers based on a CMOS camera system. Then, the mechanical components of the rehabilitation system were manufactured using a 3D printer. User safety is guaranteed using a simple operation range control connector mechanism which mechanically locks up when the range of motion of each finger is exceeded for finger extension. We verified the usability of the hand rehabilitation system and applied the system to two custom interactive video games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mackay J, Mensah G (2004) The atlas of heart disease and stroke. World Health Organization, Geneva

    Google Scholar 

  2. Twitchell TE (1951) The restoration of motor function following hemiplegia in man. Brain J Neurol 74(4):443–480

    Article  Google Scholar 

  3. Snoek GJ, Jzerman MJI, Hermens HJ, Maxwell D, Biering-Sorensen F (2004) Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord 42(9):526–532

    Article  Google Scholar 

  4. Krigger KW (2006) Cerebral palsy: an overview. Am Fam Physician 73(1):91–100

    Google Scholar 

  5. Polygerinos P, Lyne S, Zheng W, Nicolini LF, Mosadegh B, Whitesides GM, Walsh CJ (2013) Toward a soft pneumatic glove for hand rehabilitation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). pp 1512–1517, 3–7 Nov 2013

  6. Reinkensmeyer DJ, Emken JL, Cramer SC (2004) Robotics, motor learning and neurologic recovery. Ann Rev Biomed Eng 6:497–525

    Article  Google Scholar 

  7. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot-based hand motor therapy after stroke. Brain 131:425–437

    Article  Google Scholar 

  8. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T et al (2012) Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron 17:136–146

    Article  Google Scholar 

  9. Polygerinos P, Wanga Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143

    Article  Google Scholar 

  10. In H, Kang BB, Sin M, Cho KJ (2015) Exo-glove a wearable robot for the hand with a soft tendon routing system. IEEE Robot Autom Mag 22:97–105

    Article  Google Scholar 

  11. Chiri A, Giovacchini F, Vitiello N, Cattin E, Roccella S, Vecchi F, Carrozza MC (2009) HANDEXOS: toward an exoskeleton device for the rehabilitation of the hand. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 1106–1111

  12. Chiri A, Vitiello N, Giovacchini F, Roccella S, Vecchi F, Carrozza MC (2011) Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/AMSE Trans Mechatron 99:1–11

    Google Scholar 

  13. Wege A, Hommel G (2005) Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems, pp 3046–3051

  14. Wege A, Zimmermann A (2007) Electromyography sensor based control for a hand rehabilitation. In: Proceeding of the IEEE international conference on robots and biomimetics, pp 1470–1475

  15. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T, Ishigure Y, Ojika T, Mouri T (2012) Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron 17(1):136–146

    Article  Google Scholar 

  16. Otto Bock HealthCare. WaveFlex hand CPM device. http://www.ottobock.ca/cps/rde/xchg/ob_us_en/hs.xsl/15712.html

  17. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot-based hand motor therapy after stroke. Brain 131(2):425–437

    Article  Google Scholar 

  18. Wu J, Huang J, Wang Y, Xing K (2010) “A wearable rehabilitation robotic hand driven by RM-TS actuators. In: Liu H, Diong H, Xiong Z, Zhu X (eds) Intelligent robotics and applications, vol 6425. Springer, New York, pp 440–450

    Chapter  Google Scholar 

  19. Kang BB, Lee H, In H, Jeong U, Chung J, Cho K (2016) Development of a polymer-based tendon-driven wearable robotic hand 2016 In: IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487562

  20. Kim B, In H, Lee D, Cho K (2017) Development and assessment of a hand assist device: GRIPIT. J Neuroeng Rehabil 14(1):15. https://doi.org/10.1186/s12984-017-0223-4

    Article  Google Scholar 

  21. Popov D, Gaponov I, Ryu J (2017) Portable Exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans Mechatron 1:2–3. https://doi.org/10.1109/TMECH.2016.2641932

    Article  Google Scholar 

  22. Park S, Bishop L, Post T, Xiao Y, Stein J, Ciocarlie M (2016) On the feasibility of wearable exotendon networks for whole-hand movement patterns in stroke patients. 2016 IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/ICRA.2016.7487560

  23. Nilsson M, Ingvast J, Wikander J, Holst H (2012) The soft extra muscle system for improving the grasping capability in neurological rehabilitation. In: 2012 IEEE EMBS international conference on biomedical engineering and sciences. https://doi.org/10.1109/iecbes.2012.6498090

  24. Fischer H, Triandafilou K, Thielbar K, Ochoa J, Lazzaro E, Pacholski K, Kamper D (2016) Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehab Eng. https://doi.org/10.1109/TNSRE.2015.2513675

    Article  Google Scholar 

  25. Chu C, Patterson RM (2018) Soft robotic devices for hand rehabilitation and assistance: a narrative review. J NueroEng Rehab 15:9

    Article  Google Scholar 

  26. Heo P, Gu GM, Lee SJ, Rhee K, Kim J (2012) Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int J Precis Eng Manuf 13(5):807–824

    Article  Google Scholar 

  27. Moura JT, Elmali H, Olgac N (1997) Sliding mode control with sliding perturbation observer. J Dyn Syst Meas Control 119(4):657–665

    Article  MATH  Google Scholar 

  28. Pyk P et al (2008) A paediatric interactive therapy system for arm and hand rehabilitation. In: 2008 virtual rehabilitation IWVR, pp 127–132

  29. Sveistrup H et al (2004) Outcomes of intervention programs using flatscreen virtual reality. In: Conference proceedings: IEEE engineering in medicine and biology society, vol 7, pp 4856–4858

  30. Harris K, Reid D, Harris K (2005) The influence of virtual reality play on children’s motivation PDF. Can J Occup Ther 72(1):21–29

    Article  Google Scholar 

  31. Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H (2006) Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol Behav 9(2):123–128

    Article  Google Scholar 

  32. You SH, Jang SH, Kim Y-H, Kwon Y-H, Barrow I, Hallett M (2005) Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol 47(9):628–635

    Article  Google Scholar 

  33. Reid D (2004) The influence of virtual reality on playfulness in children with cerebral palsy: a pilot study. Occup Ther Int 11(3):131–144

    Article  Google Scholar 

  34. Park J-H (2013) Effect of robot-assisted hand rehabilitation on hand function in chronic stroke patients. J Korea Robot Soc 8(4):273–282

    Article  Google Scholar 

  35. Jones CL, Wang F, Morrison R, Sarkar N, Kamper DG (2014) Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans Mechatron 19:131–140

    Article  Google Scholar 

  36. Gil-Gomez J, Gil-Gomez H, Lozano-Quilis J, Manzano-Hernandez P, Albiol-Perz S, Aul-Valero C (2013) SEQ: suitability evaluation questionnaire for virtual rehabilitation systems application in a virtual rehabilitation system for balance rehabilitation. In: International conference on pervasive computing technologies for healthcare and workshops

  37. Gil-Gomez J, Manzano-Hernandez P, Albiol-Perez S, Aula-Valero C, Gil-Gomez H, Lozano-Quilis J (2017) USEQ: a short questionnaire for satisfaction evaluation of virtual rehabilitation systems. Sensors. https://doi.org/10.3390/s17071589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bummo Ahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Han, S.Y., Yang, GH. et al. Development of an interactive game-based mirror image hand rehabilitation system. Intel Serv Robotics 12, 149–157 (2019). https://doi.org/10.1007/s11370-018-00272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-00272-5

Keywords

Navigation