Skip to main content

Advertisement

Log in

A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions

  • Review Article
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Magnetic actuation techniques and microrobots have attracted considerable interest due to their potential applications in biomedicine. Interventional techniques have emerged as a minimally invasive approach to treat a wide range of vascular diseases. The current practice of interventional procedures is, however, limited by manual control of interventional devices and time-consuming procedures. Moreover, fluoroscopy is considered as an essential part of the procedure today despite posing many limitations for patients and physicians. Recently, various microrobotic solutions have been proposed for vascular interventions, including advances in magnetic navigation systems and magnetically steerable catheters and guidewires, which have shown potential benefits such as reduced radiation doses, improved access to difficult-to-reach and tortuous anatomy. This paper reviews the commercial magnetic actuation systems and magnetically actuated interventional microrobots that have been developed by academic research groups and medical companies worldwide, outlining their capability, applicability as well as limitations. We further address the challenges and future prospects of the research toward clinical acceptance of magnetic interventional technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jager EW, Inganäs O, Lundström I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288(5475):2335–2338

    Article  Google Scholar 

  2. Charreyron SL, Zeydan B, Nelson BJ (2017) Shared control of a magnetic microcatheter for vitreoretinal targeted drug delivery. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4843–4848

  3. Park J, Jin C, Lee S, Kim JY, Choi H (2019) Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv Healthc Mater 8(16):1900213

    Article  Google Scholar 

  4. Vikram Singh A, Sitti M (2016) Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des 22(11):1418–1428

    Article  Google Scholar 

  5. Lee S, Kim S, Kim S, Kim JY, Moon C, Nelson BJ, Choi H (2018) A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery. Adv Healthc Mater 7(9):1700985

    Article  Google Scholar 

  6. Jeon S, Kim S, Ha S, Lee S, Kim E, Kim SY, Park SH, Jeon JH, Kim SW, Moon C, Nelson BJ, Kim J-Y, Yu S-W, Choi H (2019) Magnetically actuated microrobots as a platform for stem cell transplantation. Sci Robot 4(30):eaav4317

    Article  Google Scholar 

  7. Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25(41):5863–5868

    Article  Google Scholar 

  8. Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17(10):1705–1724

    Article  Google Scholar 

  9. Lee S, Lee S, Kim S, Yoon C-H, Park H-J, Kim J-y, Choi H (2018) Fabrication and characterization of a magnetic drilling actuator for navigation in a three-dimensional phantom vascular network. Sci Rep 8(1):3691

    Article  Google Scholar 

  10. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  11. Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458(7242):1121

    Article  Google Scholar 

  12. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller ED (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224

    Article  Google Scholar 

  13. Stone GW, Maehara A, Lansky AJ, De Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235

    Article  Google Scholar 

  14. Kearney K, Hira RS, Riley RF, Kalyanasundaram A, Lombardi WL (2017) Update on the management of chronic total occlusions in coronary artery disease. Curr Atheroscler Rep 19(4):19

    Article  Google Scholar 

  15. Touma G, Ramsay D, Weaver J (2015) Chronic total occlusions—current techniques and future directions. IJC Heart Vasc 7:28–39

    Article  Google Scholar 

  16. Louvard Y, Lefèvre T, Morice M-C (2004) Percutaneous coronary intervention for bifurcation coronary disease. Heart 90(6):713–722

    Article  Google Scholar 

  17. Roubin GS, Yadav S, Iyer SS, Vitek J (1996) Carotid stent-supported angioplasty: a neurovascular intervention to prevent stroke. Am J Cardiol 78(3):8–12

    Article  Google Scholar 

  18. Levin DC, Rao VM, Parker L, Bonn J, Maitino AJ, Sunshine JH (2005) The changing roles of radiologists, cardiologists, and vascular surgeons in percutaneous peripheral arterial interventions during a recent five-year interval. J Am College Radiol 2(1):39–42

    Article  Google Scholar 

  19. Willinsky R (2000) Use of a second microcatheter in the management of a perforation during endovascular treatment of a cerebral aneurysm. Am J Neuroradiol 21(8):1537–1539

    Google Scholar 

  20. Jones WS, Mi X, Qualls LG, Vemulapalli S, Peterson ED, Patel MR, Curtis LH (2015) Trends in settings for peripheral vascular intervention and the effect of changes in the outpatient prospective payment system. J Am Coll Cardiol 65(9):920–927

    Article  Google Scholar 

  21. Jaïs P, Haïssaguerre M, Shah DC, Chouairi S, Gencel L, Hocini M, Clémenty J (1997) A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95(3):572–576

    Article  Google Scholar 

  22. Verma A, Jiang C-y, Betts TR, Chen J, Deisenhofer I, Mantovan R, Macle L, Morillo CA, Haverkamp W, Weerasooriya R (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372(19):1812–1822

    Article  Google Scholar 

  23. Schneider P (2019) Endovascular skills: guidewire and catheter skills for endovascular surgery. CRC Press, Boca Raton

    Google Scholar 

  24. Ammann P, Brunner-La Rocca HP, Angehrn W, Roelli H, Sagmeister M, Rickli MdH (2003) Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size. Catheter Cardiovasc Interv 59(1):13–18

    Article  Google Scholar 

  25. Suzuki S, Furui S, Kohtake H, Yokoyama N, Kozuma K, Yamamoto Y (2006) Radiation exposure to patient’s skin during percutaneous coronary intervention for various lesions, including chronic total occlusion. Circ J 70(1):44–48

    Article  Google Scholar 

  26. Rosenthal LS, Mahesh M, Beck TJ, Saul JP, Miller JM, Kay N, Klein LS, Huang S, Gillette P, Prystowsky E (1998) Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol 82(4):451–458

    Article  Google Scholar 

  27. Miller DL, Balter S, Noonan PT, Georgia JD (2002) Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology 225(2):329–336

    Article  Google Scholar 

  28. Walsh SR, Cousins C, Tang TY, Gaunt ME, Boyle JR (2008) Ionizing radiation in endovascular interventions. J Endovasc Ther 15(6):680–687

    Article  Google Scholar 

  29. Stratakis J, Damilakis J, Tsetis D, Gourtsoyiannis N (2007) Radiation dose and risk from fluoroscopically guided percutaneous transluminal angioplasty and stenting in the abdominal region. Eur Radiol 17(9):2359–2367

    Article  Google Scholar 

  30. Hidajat N, Wust P, Felix R, Schröder RJ (2006) Radiation exposure to patient and staff in hepatic chemoembolization: risk estimation of cancer and deterministic effects. Cardiovasc Intervent Radiol 29(5):791–796

    Article  Google Scholar 

  31. Lange HW, von Boetticher H (2006) Randomized comparison of operator radiation exposure during coronary angiography and intervention by radial or femoral approach. Catheter Cardiovasc Interv 67(1):12–16

    Article  Google Scholar 

  32. Karpelson M, Wei G-Y, Wood RJ (2012) Driving high voltage piezoelectric actuators in microrobotic applications. Sens Actuators, A 176:78–89

    Article  Google Scholar 

  33. Flynn AM, Tavrow LS, Bart SF, Brooks RA, Ehrlich DJ, Udayakumar KR, Cross LE (1990) Piezoelectric micromotors for microrobots. In: IEEE symposium on ultrasonics, 1990. IEEE, pp 1163–1172

  34. Kosa G, Shoham M, Zaaroor M (2007) Propulsion method for swimming microrobots. IEEE Trans Rob 23(1):137–150

    Article  Google Scholar 

  35. Donald BR, Levey CG, McGray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15(1):1–15

    Article  Google Scholar 

  36. Ebefors T, Mattsson JU, Kälvesten E, Stemme G (1999) A walking silicon micro-robot. In: Proceedings of transducers’ 99, 1999. pp 1202–1205

  37. Bonvilain A, Chaillet N (2003) Microfabricated thermally actuated microrobot. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), 2003. IEEE, pp 2960–2965

  38. Erdem EY, Chen Y-M, Mohebbi M, Suh JW, Kovacs GT, Darling RB, Bohringer KF (2010) Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst 19(3):433–442

    Article  Google Scholar 

  39. Glückstad J, Villangca MJ, Palima DZ, Bañas A (2017) Light-actuated microrobots for biomedical science. Spie Newsroom, Bellingham

    Book  Google Scholar 

  40. Palima D, Glückstad J (2013) Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 7(4):478–494

    Article  Google Scholar 

  41. Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P (2018) Photogravitactic microswimmers. Adv Func Mater 28(25):1706660

    Article  Google Scholar 

  42. Hu W, Ishii KS, Fan Q, Ohta AT (2012) Hydrogel microrobots actuated by optically generated vapour bubbles. Lab Chip 12(19):3821–3826

    Article  Google Scholar 

  43. Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF, Sourjik V, Sitti M (2018) Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci Robot 3(17):eaar4423

    Article  Google Scholar 

  44. Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8(5):5049–5060

    Article  Google Scholar 

  45. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90(2):023902

    Article  Google Scholar 

  46. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14):1688–1692

    Article  Google Scholar 

  47. Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv 4(11):eaat4388

    Article  Google Scholar 

  48. Diller E, Sitti M (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Func Mater 24(28):4397–4404

    Article  Google Scholar 

  49. Kim S, Lee S, Lee J, Nelson BJ, Zhang L, Choi H (2016) Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep 6:30713

    Article  Google Scholar 

  50. Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81

    Article  Google Scholar 

  51. Chautems C, Lyttle S, Boehler Q, Nelson BJ (2018) Design and evaluation of a steerable magnetic sheath for cardiac ablations. IEEE Robot Autom Lett 3(3):2123–2128

    Article  Google Scholar 

  52. Jeon S, Hoshiar AK, Kim S, Lee S, Kim E, Lee S, Kim K, Lee J, Kim J-y, Choi H (2018) Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro Nano Syst Lett 6(1):15

    Article  Google Scholar 

  53. Ren Z, Hu W, Dong X, Sitti M (2019) Multi-functional soft-bodied jellyfish-like swimming. Nature. Communications 10(1):1–12

    Article  Google Scholar 

  54. Silva AKA, Silva EL, Egito EST, Carriço AS (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45(4):245–252

    Article  Google Scholar 

  55. Nguyen BL, Merino JL, Gang ES (2010) Remote navigation for ablation procedures–a new step forward in the treatment of cardiac arrhythmias. Eur Cardiol 6(3):50–56

    Article  Google Scholar 

  56. Petrů J, Škoda J (2012) Robot-assisted navigation in atrial fibrillation ablation—of any benefits? Cor et Vasa. 54(6):e408–e413

    Article  Google Scholar 

  57. Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pane S, Nelson BJ (2017) Magnetically powered microrobots: a medical revolution underway? Eur J Cardiothorac Surg 51(3):405–407

    Google Scholar 

  58. Jiles D (2015) Introduction to magnetism and magnetic materials. CRC Press, Boca Raton

    Google Scholar 

  59. Furlani EP (2001) Permanent magnet and electromechanical devices: materials, analysis, and applications. Academic Press, Cambridge

    Google Scholar 

  60. Liu C (2012) Foundations of MEMS. Pearson Education, London

    Google Scholar 

  61. Ryan P, Diller E (2016) Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets. In: 2016 IEEE international conference on robotics and automation (ICRA), 2016. IEEE, pp 1731–1736

  62. Boskma KJ, Scheggi S, Misra S (2016) Closed-loop control of a magnetically-actuated catheter using two-dimensional ultrasound images. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 2016. IEEE, pp 61–66

  63. Salmanipour S, Diller E (2018) Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In: 2018 IEEE international conference on robotics and automation (ICRA), 2018. IEEE, pp 1–6

  64. Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: 2008 IEEE international conference on robotics and automation, 2008. IEEE, pp 419–424

  65. Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Bänsch D, Antz M, Kuck K-H (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109(12):1472–1475

    Article  Google Scholar 

  66. Ernst S, Ouyang F, Linder C, Hertting K, Stahl F, Chun J, Hachiya H, Krumsdorf U, Antz M, Kuck K-H (2004) Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. EP Eur 6(1):10–14

    Google Scholar 

  67. Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello G (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400

    Article  Google Scholar 

  68. Chun JK-R, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S, Ujeyl A, Antz M, Ouyang F, Kuck K-H (2007) Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 28(2):190–195

    Article  Google Scholar 

  69. Di Biase L, Fahmy TS, Patel D, Bai R, Civello K, Wazni OM, Kanj M, Elayi CS, Ching CK, Khan M (2007) Remote magnetic navigation: human experience in pulmonary vein ablation. J Am Coll Cardiol 50(9):868–874

    Article  Google Scholar 

  70. Carpi F, Pappone C (2009) Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev Med Dev 6(5):487–498

    Article  Google Scholar 

  71. Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, Solomon SL, Kleiman NS (2006) Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol 47(3):515–521

    Article  Google Scholar 

  72. Thornton AS, Jordaens LJ (2006) Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm 3(6):691–696

    Article  Google Scholar 

  73. Choi MS, Oh Y-S, Jang SW, Kim JH, Shin WS, Youn H-J, Jung WS, Lee MY, Seong KB (2011) Comparison of magnetic navigation system and conventional method in catheter ablation of atrial fibrillation: is magnetic navigation system is more effective and safer than conventional method? Korean Circul J 41(5):248–252

    Article  Google Scholar 

  74. Kiemeneij F, Patterson MS, Amoroso G, Laarman G, Slagboom T (2008) Use of the Stereotaxis Niobe® magnetic navigation system for percutaneous coronary intervention: results from 350 consecutive patients. Catheter Cardiovasc Interv 71(4):510–516

    Article  Google Scholar 

  75. Armacost MP, Adair J, Munger T, Viswanathan RR, Creighton FM, Curd DT, Sehra R (2007) Accurate and reproducible target navigation with the stereotaxis Niobe® magnetic navigation system. J Cardiovasc Electrophysiol 18:S26–S31

    Article  Google Scholar 

  76. Tsuchida K, García-García HM, van der Giessen WJ, McFadden EP, van der Ent M, Sianos G, Meulenbrug H, Ong AT, Serruys PW (2006) Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: first clinical experience. Catheter Cardiovasc Interv 67(3):356–363

    Article  Google Scholar 

  77. Elrod J (2017) A new option for catheter guidance control and imaging. EPLab Digest, Devault

    Google Scholar 

  78. Gang ES, Nguyen BL, Shachar Y, Farkas L, Farkas L, Marx B, Johnson D, Fishbein MC, Gaudio C, Kim S (2011) Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system. Circul Arrhythm Electrophysiol 4(5):770–777

    Article  Google Scholar 

  79. Nguyen BL, Merino JL, Shachar Y, Estrada A, Doiny D, Castrejon S, Marx B, Johnson D, Marfori W, Gang ES (2013) Non-fluoroscopic transseptal catheterization during electrophysiology procedures using a remote magnetic navigation system. J Atr Fibrillation 6(4):963

    Google Scholar 

  80. Filgueiras-Rama D, Estrada A, Shachar J, Castrejón S, Doiny D, Ortega M, Gang E, Merino JL (2013) Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures. JoVE 74:e3658

    Google Scholar 

  81. Moya À, Sancho-Tello MJ, Arenal Á, Fidalgo ML, Brugada R, Ferrer JM, Merino JL, Mateas FR, Mont JLJREdC (2013) Innovations in heart rhythm disturbances: cardiac electrophysiology. Arrhythm Cardiac Pacing 66(2):116–123

    Google Scholar 

  82. Chautems C, Tonazzini A, Floreano D, Nelson BJ (2017) A variable stiffness catheter controlled with an external magnetic field. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2017. IEEE, pp 181–186

  83. Chautems C, Nelson BJ (2017) The tethered magnet: force and 5-DOF pose control for cardiac ablation. In: 2017 IEEE international conference on robotics and automation (ICRA), 2017. IEEE, pp 4837–4842

  84. Li S, Zhao H, Shepherd RF (2017) Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bull 42(2):138–142

    Article  Google Scholar 

  85. Lin H-T, Leisk GG, Trimmer B (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomim 6(2):026007

    Article  Google Scholar 

  86. Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895

    Article  Google Scholar 

  87. Kratochvil BE, Kummer MP, Erni S, Borer R, Frutiger DR, Schürle S, Nelson BJ (2014) MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation. In: Experimental Robotics, 2014. Springer, Berlin, pp 317–329

  88. Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim J-y, Nelson BJ, Cha H-J, Yi B-J, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot 6(1):54–68

    Article  Google Scholar 

  89. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Rob 26(6):1006–1017

    Article  Google Scholar 

  90. Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots. Sci Robot 4(33):eaax7329

    Google Scholar 

  91. Krings T, Finney J, Niggemann P, Reinacher P, Lück N, Drexler A, Lovell J, Meyer A, Sehra R, Schauerte P (2006) Magnetic versus manual guidewire manipulation in neuroradiology: in vitro results. Neuroradiology 48(6):394–401

    Article  Google Scholar 

  92. Lalande V, Gosselin FP, Vonthron M, Conan B, Tremblay C, Beaudoin G, Soulez G, Martel S (2015) In vivo demonstration of magnetic guidewire steerability in a MRI system with additional gradient coils. Med Phys 42(2):969–976

    Article  Google Scholar 

  93. Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, Bae KT, Talcott M, Lindsay B (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23):2980–2985

    Article  Google Scholar 

  94. Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193(1):105–119

    Article  Google Scholar 

  95. Miyazaki S, Shah AJ, Xhaët O, Derval N, Matsuo S, Wright M, Nault I, Forclaz A, Jadidi AS, Knecht S (2010) Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circul Arrhythm Electrophysiol 3(6):585–589

    Article  Google Scholar 

  96. Vollmann D, Lüthje L, Seegers J, Hasenfuss G, Zabel M (2009) Remote magnetic catheter navigation for cavotricuspid isthmus ablation in patients with common-type atrial flutter. Circul Arrhythm Electrophysiol 2(6):603–610

    Article  Google Scholar 

  97. Gosselin FP, Lalande V, Martel S (2011) Characterization of the deflections of a catheter steered using a magnetic resonance imaging system. Med Phys 38(9):4994–5002

    Article  Google Scholar 

  98. Vonthron M, Lalande V, Bringout G, Tremblay C, Martel S (2011) A MRI-based integrated platform for the navigation of micro-devices and microrobots. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, 2011. IEEE, pp 1285–1290

  99. Losey AD, Lillaney P, Martin AJ, Cooke DL, Wilson MW, Thorne BR, Sincic RS, Arenson RL, Saeed M, Hetts SW (2014) Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus x-ray fluoroscopy. Radiology 271(3):862–869

    Article  Google Scholar 

  100. Le VN, Nguyen NH, Alameh K, Weerasooriya R, Pratten P (2016) Accurate modeling and positioning of a magnetically controlled catheter tip. Med Phys 43(2):650–663

    Article  Google Scholar 

  101. Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ (2019) Magnetic continuum device with variable stiffness for minimally invasive surgery. Advanced Intelligent Systems 1900086

  102. Bonow RO, Eckel RH (2003) Diet, obesity, and cardiovascular risk. N Engl J Med 348(21):2057–2133

    Article  Google Scholar 

  103. Smith SC, Collins A, Ferrari R, Holmes DR, Logstrup S, McGhie DV, Ralston J, Sacco RL, Stam H, Taubert K (2012) Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol 60(22):2343–2348

    Article  Google Scholar 

  104. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 91(3):502–509

    Article  Google Scholar 

  105. Mozaffarian D, Capewell S (2011) United Nations’ dietary policies to prevent cardiovascular disease. British Medical Journal Publishing Group, London

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the Ministry of Health and Welfare, Republic of Korea (Grant No. HI19C0655020019), the Ministry of Science and ICT (Grant No. NRF-2017K1A1A2013237), Republic of Korea, and DGIST (Grant No. 20-CoE-BT-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsoo Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Kim, Jy. & Choi, H. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. Intel Serv Robotics 13, 1–14 (2020). https://doi.org/10.1007/s11370-020-00311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-020-00311-0

Keywords

Navigation