Skip to main content
Log in

Disturbance rejection sliding mode control for robots and learning design

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

The control of a robot to achieve both good dynamic and static performance against external disturbances is a challenging task, especially when high speed and a wide range of motion is required. In this paper, a disturbance rejection sliding mode control (SMC) methodology is designed for a robot manipulator. This methodology synthesizes the SMC design with the active disturbance rejection control (ADRC) technique. An extended state observer is employed to estimate unknown disturbances, which is difficult to deal with in a conventional SMC design, and to simplify the SMC law design. A learning-based parameter tuning methodology is presented to autonomously obtain the control parameters offline. To develop a robust and transferring controller, a neural network is used to learn the joint actuation ability for the controller optimizing process. Compared with other state-of-the-art controllers, both numerical simulations and experiments of a 6-DOF robot are provided to demonstrate the proposed control method and design methodology. These results reveal that the proposed control method has a satisfying tracking performance and strong disturbance rejection ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yu H, Huang S, Chen G, Pan Y, Guo Z (2015) Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot 31(5):1089–1100. https://doi.org/10.1109/tro.2015.2457314

    Article  Google Scholar 

  2. Lunardini F, Casellato C, d’Avella A, Sanger TD, Pedrocchi A (2016) Robustness and reliability of synergy-based myocontrol of a multiple degree of freedom robotic arm. IEEE Trans Neural Syst Rehabil Eng 24(9):940–950. https://doi.org/10.1109/TNSRE.2015.2483375

    Article  Google Scholar 

  3. Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V, Hutter M (2019) Learning agile and dynamic motor skills for legged robots. Sci Robot 4(26):13. https://doi.org/10.1126/scirobotics.aau5872

    Article  Google Scholar 

  4. Petit F, Daasch A, Albu-Schaffer A (2015) Backstepping control of variable stiffness robots. IEEE Trans Control Syst Technol 23(6):2195–2202. https://doi.org/10.1109/Tcst.2015.2404894

    Article  Google Scholar 

  5. Hoover RC, Roberts RG, Maciejewski AA, Naik PS, Ben-Gharbia KM (2015) Designing a failure-tolerant workspace for kinematically redundant robots. IEEE Trans Autom Sci Eng 12(4):1421–1432. https://doi.org/10.1109/tase.2014.2337935

    Article  Google Scholar 

  6. Chen WJ, Tomizuka M (2014) Dual-stage iterative learning control for MIMO mismatched system with application to robots with joint elasticity. IEEE Trans Control Syst Technol 22(4):1350–1361. https://doi.org/10.1109/Tcst.2013.2279652

    Article  Google Scholar 

  7. Chen CY, Huang PH (2012) Review of an autonomous humanoid robot and its mechanical control. J Vib Control 18(7):973–982. https://doi.org/10.1177/1077546310395974

    Article  MathSciNet  Google Scholar 

  8. Zhang D, Wei B (2017) A review on model reference adaptive control of robotic manipulators. Annu Rev Control 43:188–198. https://doi.org/10.1016/j.arcontrol.2017.02.002

    Article  Google Scholar 

  9. Zhao Z, Yang J, Li S, Yu X, Wang Z (2018) Continuous output feedback tsm control for uncertain systems with a DC–AC inverter example. IEEE Trans Circuits Syst II Express Briefs 65(1):71–75. https://doi.org/10.1109/tcsii.2017.2692256

    Article  Google Scholar 

  10. Cao Y, Chen XB (2014) Disturbance-observer-based sliding-mode control for a 3-DOF nanopositioning stage. IEEE/ASME Trans Mechatron 19(3):924–931. https://doi.org/10.1109/tmech.2013.2262802

    Article  Google Scholar 

  11. Lima GS, Trimpe S, Bessa WM (2020) Sliding mode control with gaussian process regression for underwater robots. J Intell Rob Syst. https://doi.org/10.1007/s10846-019-01128-5

    Article  Google Scholar 

  12. Bae J, Kong K, Tomizuka M (2011) Gait phase-based control for a rotary series elastic actuator assisting the knee joint. J Med Devices 5(3):6. https://doi.org/10.1115/1.4004793

    Article  Google Scholar 

  13. Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169. https://doi.org/10.1109/tie.2012.2183841

    Article  Google Scholar 

  14. Wang H, Pan Y, Li S, Yu H (2019) Robust sliding mode control for robots driven by compliant actuators. IEEE Trans Control Syst Technol 27(3):1259–1266. https://doi.org/10.1109/tcst.2018.2799587

    Article  Google Scholar 

  15. Van M, Mavrovouniotis M, Ge SS (2019) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern Syst 49(7):1448–1458. https://doi.org/10.1109/tsmc.2017.2782246

    Article  Google Scholar 

  16. Gao Z-Q (2013) On the foundation of active disturbance rejection control. Control Theory Appl 30(12):1498–1510. https://doi.org/10.7641/cta.2013.31087

    Article  Google Scholar 

  17. Han J-Q (2002) From PID technique to active disturbances rejection control technique. Control Eng China (China) 9(3):13–18

    Google Scholar 

  18. Chen Z, Wang Y, Sun M, Sun Q (2018) Global and asymptotical stability of active disturbance rejection control for second-order nonlinear systems. Control Theory Appl 35(11):1687–1696

    MATH  Google Scholar 

  19. Dan W, Ken C (2009) Design and analysis of precision active disturbance rejection control for noncircular turning process. IEEE Trans Ind Electron 56(7):2746–2753. https://doi.org/10.1109/tie.2009.2019774

    Article  Google Scholar 

  20. Cheng Y, Chen Z, Sun M, Sun Q (2017) Multivariable inverted decoupling active disturbance rejection control and its application to a distillation column process. Acta Autom Sin 43(6):1080–1088

    Google Scholar 

  21. Huang Y, Xu KK, Han JQ, Lam J, Ieee I (2001) Flight control design using extended state observer and non-smooth feedback. In: Proceedings of the 40th ieee conference on decision and control. Vols 1–5. IEEE conference on decision and control, pp. 223–228. Ieee, New York

  22. Martinez-Fonseca N, Castaneda LA, Uranga A, Luviano-Juarez A, Chairez I (2016) Robust disturbance rejection control of a biped robotic system using high-order extended state observer. ISA Trans 62:276–286. https://doi.org/10.1016/j.isatra.2016.02.003

    Article  Google Scholar 

  23. Guerrero-Castellanos JF, Rifai H, Arnez-Paniagua V, Linares-Flores J, Saynes-Torres L, Mohammed S (2018) Robust active disturbance rejection control via control lyapunov functions: application to actuated-ankle-foot-orthosis. Control Eng Pract 80:49–60. https://doi.org/10.1016/j.conengprac.2018.08.008

    Article  Google Scholar 

  24. Long Y, Du ZJ, Cong L, Wang WD, Zhang ZM, Dong W (2017) Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans 67:389–397. https://doi.org/10.1016/j.isatra.2017.01.006

    Article  Google Scholar 

  25. Castaneda LA, Luviano-Juarez A, Chairez I (2015) Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans Control Syst Technol 23(4):1387–1398. https://doi.org/10.1109/tcst.2014.2367313

    Article  Google Scholar 

  26. Talole SE, Kolhe JP, Phadke SB (2010) Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans Ind Electron 57(4):1411–1419

    Article  Google Scholar 

  27. Xue W, Madonski R, Lakomy K, Gao Z, Huang Y (2017) Add-on module of active disturbance rejection for set-point tracking of motion control systems. IEEE Trans Ind Appl 53(4):4028–4040

    Article  Google Scholar 

  28. Madonski R, Ramírez-Neria M, Gao Z, Yang J, Li S (2019) Attenuation of periodic disturbances via customized ADRC solution: a case of highly oscillatory 3DOF torsional plant. 2019 IEEE 8th data driven control and learning systems conference (DDCLS), Dali, China, 2019, pp. 1111-1116

  29. Ren T, Dong Y, Wu D, Chen K (2018) Collision detection and identification for robot manipulators based on extended state observer. Control Eng Pract 79:144–153. https://doi.org/10.1016/j.conengprac.2018.07.004

    Article  Google Scholar 

  30. Dong YF, Ren TY, Wu D, Chen K (2020) Compliance control for robot manipulation in contact with a varied environment based on a new joint torque controller. J Intell Rob Syst. https://doi.org/10.1007/s10846-019-01109-8

    Article  Google Scholar 

  31. Fangli MOU, Dan WU, Yunfei DONG (2020) Active disturbance rejection control with multilayer perceptron compensating network for robot systems. Control Theory Appl 37(6):1397–1405

    MATH  Google Scholar 

  32. Khatib O, Burdick J (1986) Motion and force control of robot manipulators. In: Proceedings. 1986 IEEE international conference on robotics and automation, 7–10 April 1986, pp. 1381–1386

  33. Bishop C (2006) Pattern Recognition and Machine Learning. Springer-Verlag, New York, NY, USA

    MATH  Google Scholar 

  34. Han J (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906

    Article  Google Scholar 

  35. Zhiqiang G (2003) Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference, 2003, Denver, CO, USA, 2003, pp. 4989–4996. Doi: https://doi.org/10.1109/ACC.2003.1242516.

  36. Zhou W, Shao S, Gao Z (2009) A stability study of the active disturbance rejection control problem by a singular perturbation approach. Appl Math Sci 3(10):491–508

    MathSciNet  MATH  Google Scholar 

  37. Yang XX, Huang Y (2009) Capabilities of extended state observer for estimating uncertainties. P Am Contr Conf. pp 3700–3705. Doi: https://doi.org/10.1109/Acc.2009.5160642

  38. Conn AR, Gould NIM, Toint PhL (1997) A globally convergent augmented lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Math Comput 66(217):261–288

    Article  MATH  Google Scholar 

  39. Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289. [Online]. Available: https://arxiv.org/abs/1511.07289.

  40. Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier GANs. ArXiv.Org, 2017. Available: https://search.proquest.com/docview/2076097206?accountid=14426.

  41. Parra-Vega V, Arimoto S, Yun-Hui L, Hirzinger G, Akella P (2003) Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans Robot Autom 19(6):967–976. https://doi.org/10.1109/tra.2003.819600

    Article  Google Scholar 

  42. Zurita-Bustamante EW, Linares-Flores J, Guzmán-Ramírez E, Sira-Ramírez H (2011) A comparison between the GPI and PID controllers for the stabilization of a DC-DC ‘buck’ converter: a field programmable gate array implementation. IEEE Trans Ind Electron 58(11):5251–5262

    Article  Google Scholar 

  43. Sun J, Yang J, Zheng W, Li S (2016) GPIO-based robust control of nonlinear uncertain systems under time-varying disturbance with application to DC–DC converter. IEEE Trans Circ Syst II Exp Briefs 63(11):1074–1078

    Google Scholar 

  44. Calanca A, Capisani LM, Ferrara A, Magnani L (2011) MIMO closed loop identification of an industrial robot. IEEE Trans Control Syst Technol 19(5):1214–1224. https://doi.org/10.1109/tcst.2010.2077294

    Article  Google Scholar 

Download references

Funding

Supported by the National Natural Science Foundation of China (51575306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Mou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, F., Wu, D. & Dong, Y. Disturbance rejection sliding mode control for robots and learning design. Intel Serv Robotics 14, 251–269 (2021). https://doi.org/10.1007/s11370-021-00360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-021-00360-z

Keywords

Navigation