Skip to main content

Advertisement

Log in

A robust control of robot manipulators for physical interaction: stability analysis for the interaction with unknown environments

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

A robust control designed for multiple degrees-of-freedom (DOF) robot manipulators performing complex tasks requiring frequent physical interaction with unknown and/or uncertain environments is analyzed to provide complete stability conditions and explain its robustness to environmental changes and disturbances. Nonlinear bang–bang impact control was introduced about two decades ago. High-velocity impact experiments using a one DOF robot and a stiff aluminum wall showed superior performance than other controllers. Moreover, it does not use robot dynamics and environmental dynamics for its design. Furthermore, intriguingly, it utilized the nonlinear joint friction, which was commonly regarded as a factor deteriorating the control performance, to subside impact energy sensibly. To date, the stability was, however, not completely proved. Thus, NBBIC was not widely adopted. In this study, thus, complete and sufficient stability conditions of NBBIC for multi-DOF robots are derived based on energy comparisons and \(L_{\infty }^{n}\) space analysis. It was found that the NBBIC stability condition does not require information on the environmental dynamics and disturbances. Stability was affected by the intentional time delay, which was needed to efficiently and effectively estimate the environment and robot dynamics and the accuracy of robot inertia estimate. As was expected, larger friction was better for subsiding the impact force that is expected when impacting an environment at high velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu WL, Han JD, Tso SK (2000) Experimental study of contact transition control incorporating joint acceleration feedback. IEEE/ASME Trans Mechatron 5(3):292–301. https://doi.org/10.1109/3516.868921

    Article  Google Scholar 

  2. Nenchev DN, Yoshida K (1999) Impact analysis and post-impact motion control issues of a free-floating Space robot subject to a force impulse. IEEE Trans Robot Autom 15(3):548–557. https://doi.org/10.1109/70.768186

    Article  Google Scholar 

  3. Indri M, Tornambe A (1999) Impact model and control of two multi-DOF cooperating manipulators. IEEE Trans Autom Control 44(6):1297–1303. https://doi.org/10.1109/9.769394

    Article  MathSciNet  MATH  Google Scholar 

  4. Kang H, Lee SJ, Kang SH (2020) Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments. Intel Serv Robot 13(3):393–401. https://doi.org/10.1007/s11370-020-00323-w

    Article  Google Scholar 

  5. Park SH, Son J, Jin M, Kang SH (2021) Experimental verification on the robustness and stability of an interaction control: Single-degree-of-freedom robot case. Electron Lett Accepted for publication. https://doi.org/10.1049/ell2.12151

    Article  Google Scholar 

  6. Lee E, Park J, Loparo KA, Schrader CB, Chang PH (2003) Bang-bang impact control using hybrid impedance/time-delay control. IEEE/ASME Trans Mechatronics 8(2):272–277. https://doi.org/10.1109/TMECH.2003.812849

    Article  Google Scholar 

  7. Hsia TCS, Lasky TA, Guo Z (1991) Robust independent joint controller design for industrial robot manipulators. IEEE Trans Ind Electron 38(1):21–25. https://doi.org/10.1109/41.103479

    Article  Google Scholar 

  8. Hsia TC, Gao LS Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proc. IEEE Int. Conf. Robot. Autom., Cincinnati (OH), USA, May 1990. pp 2070–2075 vol.2073. doi:https://doi.org/10.1109/ROBOT.1990.126310

  9. Youcef-Toumi K, Ito O (1990) A time delay controller for systems with unknown dynamics. ASME J Dyn Syst Meas Control 112(1):133–142. https://doi.org/10.1115/1.2894130

    Article  MATH  Google Scholar 

  10. Youcef-Toumi K, Wu S-T (1992) Input/Output linearization using time delay control. ASME J Dyn Syst Meas Control 114(1):10–19. https://doi.org/10.1115/1.2896491

    Article  MATH  Google Scholar 

  11. Kang SH, Jin M, Chang PH, Lee E Nonlinear bang-bang impact control for free space, impact and constrained motion: multi-DOF case. In: Proc. Am. Control Conf., Portland (OR), USA, 8–10 June 2005. pp 1913–1920 vol. 1913. doi:https://doi.org/10.1109/ACC.2005.1470248

  12. Jin M, Kang SH, Chang PH, Lee E Nonlinear Bang-Bang Impact Control: A Seamless Control in All Contact Modes. In: Proc. IEEE Int. Conf. Robot Autom., Barcelona, Spain, 18–22 April 2005 2005. pp 557–564. doi:https://doi.org/10.1109/ROBOT.2005.1570177

  13. Pagilla PR, Biao Y (2001) A stable transition controller for constrained robots. IEEE/ASME Trans Mechatronics 6(1):65–74. https://doi.org/10.1109/3516.914393

    Article  Google Scholar 

  14. Walker ID (1994) Impact configurations and measures for kinematically redundant and multiple armed robot systems. IEEE Trans Robot Autom 10(5):670–683. https://doi.org/10.1109/70.326571

    Article  Google Scholar 

  15. Roy S, Lee J, Baldi S (2019) A New Continuous-Time Stability Perspective of Time-Delay Control: Introducing a State-Dependent Upper Bound Structure. IEEE Control Syst Lett 3(2):475–480. https://doi.org/10.1109/LCSYS.2019.2901566

    Article  MathSciNet  Google Scholar 

  16. Roy S, Lee J, Baldi S (2021) A New Adaptive-Robust Design for Time Delay Control Under State-Dependent Stability Condition. IEEE Trans Control Syst Technol 29(1):420–427. https://doi.org/10.1109/TCST.2020.2969129

    Article  Google Scholar 

  17. Jung JH, Chang P-H, Kwon O-S A new stability analysis of time delay control for input/output linearizable plants. In: Proc. Am. Control Conf., 30 June-2 July 2004 2004. pp 4972–4979 vol.4976. doi:https://doi.org/10.23919/ACC.2004.1384638

  18. Spong M, Vidyasagar M (1987) Robust linear compensator design for nonlinear robotic control. IEEE J Robot Autom 3(4):345–351. https://doi.org/10.1109/JRA.1987.1087110

    Article  Google Scholar 

  19. Jin M, Lee J, Chang PH, Choi C (2009) Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control. IEEE Trans Ind Electron 56(9):3593–3601. https://doi.org/10.1109/TIE.2009.2024097

    Article  Google Scholar 

  20. Khalil HK, Grizzle JW (2002) Nonlinear systems, vol 3. Prentice hall Upper Saddle River, NJ,

Download references

Acknowledgments

This work was supported in part by Korea Electric Power Corporation (Grant number: R20XO02-5) and in part by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (Project Number: 202013B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hoon Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1. Proof of Lemma 1

For impact force, \({{\varvec{\uptau}}}_{s} \in L_{\infty }^{n}\) because \(\left\| {{{\varvec{\uptau}}}_{s} } \right\|_{\infty } = \mathop {\sup }\limits_{t > 0} \left| {\delta_{\alpha } (t)} \right| = {1 \mathord{\left/ {\vphantom {1 {2\alpha }}} \right. \kern-\nulldelimiterspace} {2\alpha }}\). δα(t) represents the unit pulse function defined as [4].

$$\delta_{\alpha } (t) = \left\{ {\begin{array}{*{20}l} {{1 \mathord{\left/ {\vphantom {1 {(2\alpha )}}} \right. \kern-\nulldelimiterspace} {(2\alpha )}} \, - \alpha \le t \le \alpha } \hfill \\ {0 \, t < - \alpha {\text{ or }}t > \alpha } \hfill \\ \end{array} } \right..$$
(62)

One can have stable transfer function matrices from the desired trajectory to the error (e), from external torque (τs) to error, and from ε to error with properly chosen control gains. The initial condition-related terms (ρis) of stable linear systems are bounded. \(L_{\infty }^{n}\) gains βi, γi, ηi (i = 1, …, 6) of the stable transfer functions are finite. Thus, the inequality, (17), holds. □

1.2 Appendix 2: \(L_{\infty }^{n}\) Norm Inequality of Linear Time-Invariant Systems

The following inequality holds for stable linear time-invariant (LTI) systems.

$$ \left\| {{\tilde{\mathbf{y}}}_{{{\rm out}}} (t)} \right\|_{T\infty } \le \left\| {{\mathbf{x}}_{{{\rm in}}} (t)} \right\|_{T\infty } \int\limits_{0}^{\infty } {\left\| {{\tilde{\mathbf{P}}}(\sigma )} \right\|_{i2} {\rm d}\sigma } + \left\| {{\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } , $$
(63)

where xin(t) denotes input; yout(t) output; P(t) is is impulse-response matrix; and C(t) represents the part of the output, yout, which relies on the initial conditions. The inequality (63) can be obtained from the convolution integral as follows.

$$ \begin{aligned} \left\| {{\tilde{\mathbf{y}}}_{{{\rm out}}} {\mathbf{(}}t{\mathbf{)}}} \right\|_{T\infty } & = \left\| {\int\limits_{0}^{t} {{\mathbf{\tilde{P}(}}t - \sigma {\mathbf{)x}}_{{{\text{in}}}} {\mathbf{(}}\sigma {\mathbf{)}}} {\text{d}}\sigma + {\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } \\ & \le \int\limits_{0}^{t} {\left\| {{\mathbf{\tilde{P}(}}t - \sigma {\mathbf{)x}}_{{{\text{in}}}} {\mathbf{(}}\sigma {\mathbf{)}}} \right\|_{2} {\text{d}}\sigma } + \left\| {{\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } \\ & \le \int\limits_{0}^{t} {\left\| {{\mathbf{\tilde{P}(}}t - \sigma {\mathbf{)}}} \right\|_{i2} \left| {{\mathbf{x}}_{{{\text{in}}}} {\mathbf{(}}\sigma {\mathbf{)}}} \right|} {\text{d}}\sigma + \left\| {{\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } \\ & \le \left\| {{\mathbf{x}}_{{{\text{in}}}} {\mathbf{(}}t{\mathbf{)}}} \right\|_{T\infty } \int\limits_{0}^{t} {\left\| {{\mathbf{\tilde{P}(}}\sigma {\mathbf{)}}} \right\|_{i2} } {\text{d}}\sigma + \left\| {{\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } \\ & \le \left\| {{\mathbf{x}}_{{{\text{in}}}} {\mathbf{(}}t{\mathbf{)}}} \right\|_{T\infty } \int\limits_{0}^{\infty } {\left\| {{\mathbf{\tilde{P}(}}\sigma {\mathbf{)}}} \right\|_{i2} } {\text{d}}\sigma + \left\| {{\tilde{\mathbf{C}}}(t)} \right\|_{T\infty } \, \forall t \le T. \\ \end{aligned} $$
(64)

Therefore, (63) is valid.

1.3 Appendix 3: Proof of Lemma 2–1

M(t), Δ, and G(t) are bounded because elements of those matrices and vectors are combinations of sine/cosines of joint angles. \({\tilde{\mathbf{M}}}\) and \({\tilde{\mathbf{G}}}\) are finite in magnitude because they are the difference in M(t) and G(t) over time. \({\tilde{\mathbf{w}}}(t)\) is bounded (Appendix 5).

Substituting (3), (12) (20) (21) and (22), into (19) yields.

$$ \begin{aligned} {\mathbf{\varepsilon (}}t{\mathbf{)}} & = {\mathbf{\Delta \varepsilon (}}t - L{\mathbf{)}} + {\mathbf{\Delta G}}_{v} {\mathbf{M}}_{s}^{{{\mathbf{ - 1}}}} {\mathbf{K}}_{d} {\tilde{\mathbf{e}}}_{I} {\mathbf{(}}t{\mathbf{)}} \\ & \quad {\mathbf{ + }}\left( {{{\varvec{\Delta}}}\left( {{\mathbf{G}}_{v} {\mathbf{M}}_{s}^{ - 1} {\mathbf{B}}_{d} {\mathbf{ + K}}_{d} - {\mathbf{c}}_{r} } \right){\mathbf{ + M}}^{ - 1} (t){\mathbf{q}}_{2} {\mathbf{(}}t{\mathbf{)}}} \right){\mathbf{\tilde{e}(}}t{\mathbf{)}} \\ & \quad {\mathbf{ + }}\left( {{{\varvec{\Delta}}}\left( {{\mathbf{G}}_{v} {\mathbf{ + B}}_{d} } \right){\mathbf{ + M}}^{ - 1} (t){\mathbf{q}}_{1} (t)} \right){\mathbf{\tilde{\dot{e}}(}}t) \\ & \quad {\mathbf{ + }}\left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{q}}}_{2} } \right){\mathbf{e(}}t - L{\mathbf{) + }}\left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{q}}}_{1} } \right){\mathbf{\dot{e}(}}t - L) \\ & \quad - \left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{M}}}(t)} \right){\mathbf{\ddot{e}(}}t - L{\mathbf{)}} + {\mathbf{\Delta c}}_{r} {\tilde{\mathbf{\theta }}}_{d} (t) - {\mathbf{\Delta G}}_{v} {\mathbf{\tilde{\dot{\theta }}}}_{d} (t) \\ & \quad + {\mathbf{M}}^{ - 1} (t)({\mathbf{\tilde{M}(}}t{\mathbf{)\ddot{\theta }}}_{d} {\mathbf{(}}t - L{\mathbf{) + \tilde{Q}}}_{d} (t){\mathbf{ + \tilde{G}}}(t){\mathbf{ + \tilde{w}}}(t)). \\ \end{aligned} $$
(65)

Defining the variables \(\mu \, \) and \(\delta_{i}\)(i = 1, 2, …, 6) as in (24), and \(\psi_{1\_G1}\) as

$$ \, \psi_{1\_G1} = \left\| {{\mathbf{\Delta c}}_{r} {\tilde{\mathbf{\theta }}}_{d} (t) - {\mathbf{\Delta G}}_{v} {\mathbf{\tilde{\dot{\theta }}}}_{d} (t)} \right.\left. { + {\mathbf{M}}^{ - 1} (t)\left[ {{\mathbf{\tilde{M}(}}t{\mathbf{)\ddot{\theta }}}_{d} {\mathbf{(}}t - L{\mathbf{) + \tilde{Q}}}_{d} (t){\mathbf{ + \tilde{G}}}(t){\mathbf{ + \tilde{w}}}(t)} \right]} \right\|_{\infty } $$
(66)

and taking the norms on (65) provide us

$$ \begin{gathered} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \le \mu \left\| {{{\varvec{\upvarepsilon}}}(t - L)} \right\|_{T\infty } + \delta_{1} \left\| {{\tilde{\mathbf{e}}}_{I} (t)} \right\|_{T\infty } + \delta_{2} \left\| {{\tilde{\mathbf{e}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{3} \left\| {{\mathbf{\tilde{\dot{e}}}}(t)} \right\|_{T\infty } + \delta_{4} \left\| {{\mathbf{e}}(t - L)} \right\|_{T\infty } \hfill \\ \, + \delta_{5} \left\| {{\dot{\mathbf{e}}}(t - L)} \right\|_{T\infty } + \delta_{6} \left\| {{\mathbf{\ddot{e}}}(t - L)} \right\|_{T\infty } + \psi_{1\_G1} . \hfill \\ \end{gathered} $$
(67)

By applying Lemma 1 to (67), because \(\left\| { \bullet (t - L)} \right\|_{T\infty }\) is smaller than or equal to \(\left\| { \bullet (t)} \right\|_{T\infty }\) [20], the following inequality can be derived.

$$\begin{gathered} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \le \mu \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{1} \beta_{4} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{2} \beta_{5} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{3} \beta_{6} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{4} \beta_{1} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{5} \beta_{2} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{6} \beta_{3} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \psi_{G1} . \hfill \\ \end{gathered}$$
(68)

Rearrangement of (68) leads to,

$$ \left( {1{-}\mu - \delta_{1} \beta_{4} - \delta_{2} \beta_{5} - \delta_{3} \beta_{6} - \delta_{4} \beta_{1} - \delta_{5} \beta_{2} - \delta_{6} \beta_{3} } \right) \le \psi_{G1} . $$
(69)

Note that \(\psi_{1\_G1}\) and \(\psi_{G1}\) are finite. □

1.4 Appendix 4: Proof of Lemma 2–2

The outline of the proof of lemma 2–2 is almost identical to that of lemma 2–1. Substituting (3), (12) (20) (21) and (22), into (19) results in.

$$\begin{gathered} {\mathbf{\varepsilon (}}t{\mathbf{)}} \cong {\mathbf{\Delta \varepsilon (}}t - L{\mathbf{)}} \hfill \\ \, {\mathbf{ + \Delta G}}_{v} {\mathbf{M}}_{s}^{ - 1} {\mathbf{K}}_{d} {\tilde{\mathbf{e}}}_{I} {\mathbf{(}}t{\mathbf{)}} \hfill \\ \, {\mathbf{ + }}\left( {{{\varvec{\Delta}}}\left( {{\mathbf{G}}_{v} {\mathbf{M}}_{s}^{ - 1} {\mathbf{B}}_{d} {\mathbf{ + K}}_{d} - {\mathbf{c}}_{r} } \right){\mathbf{ + M}}^{ - 1} (t){\mathbf{q}}_{2} {\mathbf{(}}t{\mathbf{)}}} \right){\mathbf{\tilde{e}(}}t{\mathbf{)}} \hfill \\ \, {\mathbf{ + }}\left( {{{\varvec{\Delta}}}\left( {{\mathbf{G}}_{v} {\mathbf{ + B}}_{d} } \right){\mathbf{ + M}}^{ - 1} (t){\mathbf{q}}_{1} (t)} \right){\mathbf{\tilde{\dot{e}}(}}t) \hfill \\ \, {\mathbf{ + }}\left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{q}}}_{2} (t)} \right){\mathbf{e(}}t - L{\mathbf{) + }}\left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{q}}}_{1} (t)} \right){\mathbf{\dot{e}(}}t - L) \hfill \\ \, - \left( {{\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{M}}}(t)} \right){\mathbf{\ddot{e}(}}t - L{\mathbf{)}} \hfill \\ \, + {\mathbf{\Delta c}}_{r} {\tilde{\mathbf{\theta }}}_{d} (t) - {\mathbf{\Delta G}}_{v} {\mathbf{\tilde{\dot{\theta }}}}_{d} (t) \hfill \\ \, + {\mathbf{M}}^{ - 1} (t)({\mathbf{\tilde{M}(}}t{\mathbf{)\ddot{\theta }}}_{d} {\mathbf{(}}t - L{\mathbf{) + \tilde{Q}}}_{d} (t){\mathbf{ + \tilde{G}}}(t){\mathbf{ + \tilde{w}}}(t)) \hfill \\ \, + {\mathbf{M}}^{ - 1} (t){\tilde{\mathbf{\tau }}}_{s} (t) + {\mathbf{\Delta G}}_{v} {\mathbf{M}}_{s}^{ - 1} \int\limits_{t - L}^{t} {{{\varvec{\uptau}}}_{s} (\sigma ){\text{d}}\sigma } . \hfill \\ \end{gathered}$$
(70)

Taking norms of both sides of (70) with defining ψ1_G2 as

$$ \begin{gathered} \psi_{1\_G2} = \left\| {{\mathbf{\Delta c}}_{r} {\tilde{\mathbf{\theta }}}_{d} (t) - {\mathbf{\Delta G}}_{v} {\mathbf{\tilde{\dot{\theta }}}}_{d} (t)} \right. + {\mathbf{\Delta G}}_{v} {\mathbf{M}}_{s}^{ - 1} \int\limits_{t - L}^{t} {{{\varvec{\uptau}}}_{s} (\sigma )d\sigma } \hfill \\ \left. { \, + {\mathbf{M}}^{ - 1} (t)\left[ {{\mathbf{\tilde{M}(}}t{\mathbf{)\ddot{\theta }}}_{d} {\mathbf{(}}t - L{\mathbf{) + \tilde{Q}}}_{d} (t){\mathbf{ + \tilde{G}}}(t){\mathbf{ + \tilde{w}}}(t) + {\tilde{\mathbf{\tau }}}_{s} (t)} \right]} \right\|_{\infty } , \hfill \\ \end{gathered} $$
(71)

yields

$$ \begin{gathered} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \le \mu \left\| {{{\varvec{\upvarepsilon}}}(t - L)} \right\|_{T\infty } + \delta_{1} \left\| {{\tilde{\mathbf{e}}}_{I} (t)} \right\|_{T\infty } + \delta_{2} \left\| {{\tilde{\mathbf{e}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{3} \left\| {{\mathbf{\tilde{\dot{e}}}}(t)} \right\|_{T\infty } + \delta_{4} \left\| {{\mathbf{e}}(t - L)} \right\|_{T\infty } \hfill \\ \, + \delta_{5} \left\| {{\dot{\mathbf{e}}}(t - L)} \right\|_{T\infty } + \delta_{6} \left\| {{\mathbf{\ddot{e}}}(t - L)} \right\|_{T\infty } + \psi_{1\_G2} . \hfill \\ \end{gathered} $$
(72)

From lemma 1 and (72), we can obtain

$$ \begin{gathered} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \le \mu \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{1} \beta_{4} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{2} \beta_{5} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{3} \beta_{6} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{4} \beta_{1} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \delta_{5} \beta_{2} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } \hfill \\ \, + \delta_{6} \beta_{3} \left\| {{{\varvec{\upvarepsilon}}}(t)} \right\|_{T\infty } + \psi_{G2} . \hfill \\ \end{gathered} $$
(73)

Rearranging (73) yields,

$$ \left( {1 - \mu - \delta_{1} \beta_{4} - \delta_{2} \beta_{5} - \delta_{3} \beta_{6} - \delta_{4} \beta_{1} - \delta_{5} \beta_{2} - \delta_{6} \beta_{3} } \right)\left\| {{\varvec{\upvarepsilon}}} \right\|_{T\infty } \le \psi_{G2} . $$
(74)

Note that \(\psi_{1\_G2}\) and \(\psi_{G2}\) are bounded. □

1.5 Appendix 5: Boundedness of \({\tilde{\mathbf{w}}}(t)\)

w(t) contains external disturbances and frictions, and the time difference of w(t), \({\tilde{\mathbf{w}}}(t)\), and is bounded. w(t) contains external disturbances and the Coulomb friction, but not the viscous friction. The viscous friction of ith joint can be written as

$$ b\dot{\theta }_{i} (t) = b\dot{\theta }_{d\_i} (t) + b\dot{e}_{i} (t), $$
(75)

where b denotes viscous friction coefficient; \(\dot{\theta }_{i}\) ith is joint angular velocity; \(\dot{\theta }_{d\_i}\) ith is joint desired angular velocity; \(\dot{e}_{i}\) ith is joint velocity error. Comparing Eq. (21) and Eq. (75) reveals that viscous friction is not included in w(t).

The difference in Coulomb friction over time is in \(L_{\infty }^{n}\).

$$\begin{gathered} f_{c\_i} sgn\left( {\dot{\theta }_{i} (t)} \right) - f_{c\_i} sgn\left( {\dot{\theta }_{i} (t - L)} \right) = \hfill \\ \left\{ {\begin{array}{*{20}l} 0 \hfill & \begin{gathered} if \, \dot{\theta }_{i} (t)\dot{\theta }_{i} (t - L) > 0{\text{ or }} \hfill \\ \, \dot{\theta }_{i} (t) = \dot{\theta }_{i} (t - L) = 0 \, \hfill \\ \end{gathered} \hfill \\ {f_{c\_i} sgn\left( {\dot{\theta }_{i} (t)} \right)} \hfill & \begin{gathered} if \, \dot{\theta }_{i} (t - L) = 0 \, and \hfill \\ \, \dot{\theta }_{i} (t) \ne 0 \hfill \\ \end{gathered} \hfill \\ { - f_{c\_i} sgn\left( {\dot{\theta }_{i} (t - L)} \right)} \hfill & \begin{gathered} if \, \dot{\theta }_{i} (t) = 0 \, and \, \hfill \\ \, \dot{\theta }_{i} (t - L) \ne 0 \hfill \\ \end{gathered} \hfill \\ {2f_{c\_i} sgn\left( {\dot{\theta }_{i} (t)} \right)} \hfill & {if \, \dot{\theta }_{i} (t)\dot{\theta }_{i} (t - L) < 0} \hfill \\ \end{array} } \right., \hfill \\ \end{gathered}$$
(76)

where fc_i denotes Coulomb friction. Equation (7) confirms that the difference in Coulomb friction over time is finite, and therefore in \(L_{\infty }^{n}\). Therefore, if external disturbance, d(t), is in \(L_{\infty }^{n}\), \({\tilde{\mathbf{w}}}(t)\) is in \(L_{\infty }^{n}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Park, S.H., Jin, M. et al. A robust control of robot manipulators for physical interaction: stability analysis for the interaction with unknown environments. Intel Serv Robotics 14, 471–484 (2021). https://doi.org/10.1007/s11370-021-00370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-021-00370-x

Keywords

Navigation