Skip to main content
Log in

Novel bio-inspired variable stiffness soft actuator via fiber-reinforced dielectric elastomer, inspired by Octopus bimaculoides

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Compliant devices are used in a wide variety of applications like soft robots. Although soft robotics have played an important role in providing the desired compliance and reducing the safety concerns on robot–human interactions, the research community soon realized that for a soft robot, not only is the compliance quite important, but also the change in the compliance and its controllability is paramount. In this regard, this research proposes a novel bio-inspired variable stiffness fiber-reinforced dielectric elastomer actuator that performs similar to the tissues of the California two-spot octopus, scientifically known as Octopus bimaculoides. It is shown that by using an initially curved dielectric elastomer strip and by properly incorporating fibers, an interesting variable stiffness actuator can be created that lays the foundation for future bionic fingers and grippers. Using an experimentally validated numerical framework, different geometries of the proposed variable stiffness dielectric elastomer actuator (VSDEA) are simulated by the means of the finite element method. The main outputs of the simulations are the force–displacement curves for different configurations of the proposed VSDEA activated by different voltages ranging from 0 to 7.5 kV. The bending stiffness of the actuators that is the initial slope of the force–displacement curves is calculated and compared for different configurations. By analyzing the outcomes of the simulations, the paper introduces an optimum configuration that is capable of varying the stiffness of the structure up to 99.3% which is a good improvement compared with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data from all sections of the manuscript are available upon request.

Code availability

The FORTRAN code used in this manuscript is available upon request.

References

  1. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294. https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  2. Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23:93–106. https://doi.org/10.1109/MRA.2016.2582718

    Article  Google Scholar 

  3. Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Rob 1:5–11. https://doi.org/10.1089/soro.2013.0001

    Article  Google Scholar 

  4. Rus D, Tolley MT (2015) Design fabrication and control of soft robots. Nature 521:467–475. https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  5. Sun W, Liu F, Ma Z, Li C, Zhou J (2016) Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys 120:084901. https://doi.org/10.1063/1.4960718

    Article  Google Scholar 

  6. Sun T, Chen Y, Han T, Jiao C, Lian B, Song Y (2020) A soft gripper with variable stiffness inspired by pangolin scales. Toothed pneumatic actuator and autonomous controller. Robot Comput Integr Manuf 61:101848. https://doi.org/10.1016/j.rcim.2019.101848

    Article  Google Scholar 

  7. Hao Y, Gong Z, Xie Z, Guan S, Yang X, Wang Tm Wen L (2018) A soft bionic gripper with variable effective length. J Bionic Eng 15:220–235. https://doi.org/10.1007/s42235-018-0017-9

    Article  Google Scholar 

  8. Pu H, Yuan S, Peng Y, Meng K, Zhao J, Xie R, Huang Y, Sun Y, Yang Y, Xie S (2019) Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation. Mech Syst Signal Process 121:942–960. https://doi.org/10.1016/j.ymssp.2018.12.028

    Article  Google Scholar 

  9. Deng D, Deng J, Yue R, Han G, Zhang J, Ma M, Zhong X (2019) Design and verification of a seat suspension with variable stiffness and damping. Smart Mater Struct 28:065015. https://doi.org/10.1088/1361-665x/ab18d4

    Article  Google Scholar 

  10. Baines RL, Booth JW, Fish FE, Kramer-Bottiglio R (2019) Toward a bio-inspired variable-stiffness morphing limb for amphibious robot locomotion. In: 2nd IEEE international conference on soft robotics (RoboSoft). Seoul, Korea, pp 704–710. https://doi.org/10.1109/ROBOSOFT.2019.8722772

  11. Nalini D, Dhanalakshmi K (2019) Synergistically configured shape memory alloy for variable stiffness translational actuation. J Intell Mater Syst Struct 30:844–854. https://doi.org/10.1177/1045389X19828487

    Article  Google Scholar 

  12. Yang Y, Kan Z, Zhang Y, Tse YA, Wang MY (2019) A novel variable stiffness actuator based on pneumatic actuation and supercoiled polymer artificial muscles. In: International conference on robotics and automation (ICRA). Montreal, Canada, pp 3983–3989. https://doi.org/10.1109/ICRA.2019.8793844

  13. Li WB, Zhang WM, Zou HX, Peng ZK, Meng G (2019) Bioinspired variable stiffness dielectric elastomer actuators with large and tunable load capacity. Soft Robot 6:631–643. https://doi.org/10.1089/soro.2018.0046

    Article  Google Scholar 

  14. Li WB, Zhang WM, Zou HX, Peng ZK, Meng G (2017) A novel variable stiffness mechanism for dielectric elastomer actuators. Smart Mater Struct 26:085033. https://doi.org/10.1088/1361-665X/aa76ba

    Article  Google Scholar 

  15. Allen DP, Bolívar E, Farmer S, Voit W, Gregg RD (2019) Mechanical simplification of variable-stiffness actuators using dielectric elastomer transducers. Actuators 8:44. https://doi.org/10.3390/act8020044

    Article  Google Scholar 

  16. Wei Y, Chen Y, Ren T, Chen Q, Yan C, Yang Y, Li Y (2016) A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot 3:134–143. https://doi.org/10.1089/soro.2016.0027

    Article  Google Scholar 

  17. Peng Y, Liu Y, Yang Y, Liu N, Sun Y, Liu Y, Pu H, Xie S, Luo J (2019) Development of continuum manipulator actuated by thin McKibben pneumatic artificial muscle. Mechatronics 60:56–65. https://doi.org/10.1016/j.mechatronics.2019.05.001

    Article  Google Scholar 

  18. Stilli A, Wurdemann HA, Althoefer K (2014) Shrinkable stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In: IEEE/RSJ international conference on intell robots and systems, Illinois, USA, pp 2476–2481. https://doi.org/10.1109/IROS.2014.6942899

  19. Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J (2013) Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew Chem Int Ed 52:9409–9421. https://doi.org/10.1002/anie.201301918

    Article  Google Scholar 

  20. Zhao X, Suo Z (2010) Theory of dielectric elastomers capable of giant deformation of actuation. Phys rev lett 104:178302. https://doi.org/10.1103/PhysRevLett.104.178302

    Article  Google Scholar 

  21. Jia K, Lu T, Wang TJ (2016) Response time and dynamic range for a dielectric elastomer actuator. Sens Actuators A 239:8–17. https://doi.org/10.1016/j.sna.2016.01.013

    Article  Google Scholar 

  22. Khan A, Khan FR, Kim HS (2018) Electro-active paper as a flexible mechanical sensor. Actuator and energy harvesting transducer: a review. Sensors 18:3474. https://doi.org/10.3390/s18103474

    Article  Google Scholar 

  23. Chavanne J, Civet Y, Perriard Y (2016) Modelling of a dielectric electroactive polymer tubular shape sensor for pressure measurements. In: IEEE international conference on advanced intelligent mechatronics (AIM), Alberta, Canada, pp 810–815. https://doi.org/10.1109/AIM.2016.7576868

  24. Liu L, Zhang C, Luo M, Chen X, Li D, Chen H (2017) A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers. Smart Mater Struct 26:085018. https://doi.org/10.1088/1361-665X/aa723f

    Article  Google Scholar 

  25. Qiu Y, Zhang E, Plamthottam R, Pei Q (2019) Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc Chem Res 52:316–325. https://doi.org/10.1021/acs.accounts.8b00516

    Article  Google Scholar 

  26. Mohd Ghazali FA, Mah CK, AbuZaiter A, Chee PS, Mohamed Ali MS (2017) Soft dielectric elastomer actuator micropump. Sens Actuators A 263:276–284. https://doi.org/10.1016/j.sna.2017.06.018

    Article  Google Scholar 

  27. Hill M, Rizzello G, Seelecke S (2017) Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane. Smart Mater Struct 26:085023. https://doi.org/10.1088/1361-665X/aa746d

    Article  Google Scholar 

  28. Gupta U, Qin L, Wang Y, Godaba H, Zhu Z (2019) Soft robots based on dielectric elastomer actuators: a review. Smart Mater Struct 28:103002. https://doi.org/10.1088/1361-665x/ab3a77

    Article  Google Scholar 

  29. Lau GK, Heng KR, Ahmed AS, Shrestha M (2017) Dielectric elastomer fingers for versatile grasping and nimble pinching. Appl Phys Lett 110:182906. https://doi.org/10.1063/1.4983036

    Article  Google Scholar 

  30. Mun S, Yun S, Nam S, Park SK, Park S, Park BJ, Lim JM, Kyung KU (2018) Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans Haptics 11:15–21. https://doi.org/10.1109/TOH.2018.2805901

    Article  Google Scholar 

  31. Phung H, Nguyen CT, Nguyen TD, Lee C, Kim U, Lee D, Nam JD, Moon H, Koo JC, Choi HR (2015) Tactile display with rigid coupling based on soft actuator. Meccanica 50:2825–2837. https://doi.org/10.1007/s11012-015-0270-5

    Article  Google Scholar 

  32. Berlinger F, Duduta M, Gloria H, Clarke D, Nagpal R, Wood R (2018) A modular dielectric elastomer actuator to drive miniature autonomous underwater vehicles. In: IEEE international conference on robotics and automation (ICRA), Brisbane, Australia, pp 3429–3435. https://doi.org/10.1109/ICRA.2018.8461217

  33. Wang K, Ouyang G, Chen X, Jakobsen H (2016) Engineering electroactive dielectric elastomers for miniature electromechanical transducers. Polym Rev 57:369–396. https://doi.org/10.1080/15583724.2016.1268156

    Article  Google Scholar 

  34. Kier WM, Stella MP (2007) The arrangement and function of octopus arm musculature and connective tissue. J Morphol 268:831–843. https://doi.org/10.1002/jmor.10548

    Article  Google Scholar 

  35. Ahmadi A, Asgari M (2019) Nonlinear coupled electro-mechanical behavior of a novel anisotropic fiber-reinforced dielectric elastomer. Int J Non Linear Mech 119:103364. https://doi.org/10.1016/j.ijnonlinmec.2019.103364

    Article  Google Scholar 

  36. Gu J, Meng X, Tang Y, Li Y, Zhuang Q, Kong J (2017) Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos A Appl Sci Manuf 92:27–32. https://doi.org/10.1016/j.compositesa.2016.11.002

    Article  Google Scholar 

  37. Peel LD (1998) Fabrication and mechanics of fiber-reinforced elastomers. PhD thesis, Department of mechanical engineering, Brigham Young University, Utah, United States

  38. Wang Y, Chen B, Bai Y, Wang H, Zhou J (2014) Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Appl Phys Lett 104:064101. https://doi.org/10.1063/1.4864402

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Asgari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Asgari, M. Novel bio-inspired variable stiffness soft actuator via fiber-reinforced dielectric elastomer, inspired by Octopus bimaculoides. Intel Serv Robotics 14, 691–705 (2021). https://doi.org/10.1007/s11370-021-00388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-021-00388-1

Keywords

Navigation