Skip to main content
Log in

Drift compensation of a holonomic mobile robot using recurrent neural networks

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Mecanum wheeled robots can exhibit serious slippage problems because of the discontinuous contact between the wheels and the ground which negatively influences the overall navigation quality. Addressing this problem, the aim of this paper is to demonstrate how a learning-based method can be used for the estimation of the drifting error from multiple sensors with distinct measurement types. Here, a recurrent neural network (RNN)-based drift compensation algorithm is proposed for the estimation of the positioning drift. In order to improve the positioning performance in dead reckoning the estimated drift is used within the real-time control loop for proper modification of the motion trajectory. During the training phase, the data acquired from the acceleration sensors attached to the robot chassis and the encoders of the wheels of the robot are used as the main features to train a gated recurrent unit-based RNN. The drift estimator is trained using the computer-generated reference position data, and the response position data which is measured using an optoelectronic motion tracking device. The performance of the proposed learning-based drift estimation and control algorithm is validated through a series of experiments. The responses obtained from the experiments are graphically illustrated and the improvements in the positioning performances are numerically evaluated. The results obtained from the experiments illustrate the effective performance of the proposed algorithm by considerably decreasing the positioning errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang JW, Kim BS, Chung MJ (2008) International conference on control, automation and systems (IEEE, 2008), pp 2070–2075

  2. Harapanahalli S, Mahony NO, Hernandez GV, Campbell S, Riordan D, Walsh J (2019) Autonomous navigation of mobile robots in factory environment. Procedia Manuf 38:1524–1531

    Article  Google Scholar 

  3. Ngo HQT, Nguyen TP, Nguyen H (2020) International conference on advanced computing and applications (ACOMP) (IEEE, 2020), pp 101–108

  4. Wang S, Jiang L, Meng J, Xie Y, Ding H (2021) Training for smart manufacturing using a mobile robot-based production line. Front Mech Eng 16(2):249–270

    Article  Google Scholar 

  5. Kim M, Choi D (2019) Design and development of a variable configuration delivery robot platform. Int J Precis Eng Manuf 20(10):1757–1765

    Article  Google Scholar 

  6. Alfandari L, Ljubić I, da Silva MDM (2022) A tailored benders decomposition approach for last-mile delivery with autonomous robots. Eur J Oper Res 299(2):510–525

    Article  MathSciNet  Google Scholar 

  7. Niu X, Wu Y, Kuang J (2021) Wheel-INS: a wheel-mounted mems IMU-based dead reckoning system. IEEE Trans Veh Technol 70(10):9814–9825

    Article  Google Scholar 

  8. Gutiérrez J, Medina FV, Porta-Gándara MÁ (2010) Vertically aligned accelerometer for wheeled vehicle odometry. Mechatronics 20(5):617–625

    Article  Google Scholar 

  9. Botero Valencia JS, Rico Garcia M, Villegas Ceballos JP (2017) A simple method to estimate the trajectory of a low cost mobile robotic platform using an IMU. Int J Interact Des Manuf (IJIDeM) 11(4):823–828

    Article  Google Scholar 

  10. Wang H, Zhang Y, Wang X, Feng Y (2022) Cascaded continuous sliding mode control for tracked mobile robot via nonlinear disturbance observer. Comput Electr Eng 97(107):579

    Google Scholar 

  11. Qazizada ME, Pivarčiová E (2016) Mobile robot controlling possibilities of inertial navigation system. Procedia Eng 149:404–413

    Article  Google Scholar 

  12. Alakshendra V, Chiddarwar SS (2017) Adaptive robust control of mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn 87(4):2147–2169

    Article  MathSciNet  Google Scholar 

  13. Peng G, Lu Z, Tan Z, He D, Li X (2021) A novel algorithm based on nonlinear optimization for parameters calibration of wheeled robot mobile chasses. Appl Math Model 95:396–408

    Article  Google Scholar 

  14. Niu Y, Liu J, Wang X, Hao W, Li W, Chen L (2020) Accurate and robust odometry by fusing monocular visual, inertial, and wheel encoder. CCF Trans Pervasive Comput Interact 2(4):275–287

    Article  Google Scholar 

  15. Jiang F, Chen J, Ji S (2021) Panoramic visual-inertial slam tightly coupled with a wheel encoder. ISPRS J Photogram Remote Sens 182:96–111

    Article  Google Scholar 

  16. Peng W, Ao Y, He J, Wang P (2021) Vehicle odometry with camera-lidar-IMU information fusion and factor-graph optimization. J Intell Robot Syst 101(4):1–13

    Article  Google Scholar 

  17. Odry Á, Fuller R, Rudas IJ, Odry P (2018) Kalman filter for mobile–robot attitude estimation: novel optimized and adaptive solutions. Mech Syst Signal Process 110:569–589

    Article  Google Scholar 

  18. Brossard M, Barrau A, Bonnabel S (2020) AI-IMU dead-reckoning. IEEE Trans Intell Veh 5(4):585–595

    Article  Google Scholar 

  19. Blok PM, van Boheemen K, van Evert FK, IJsselmuiden J, Kim GH (2019) Robot navigation in orchards with localization based on particle filter and kalman filter. Comput Electron Agric 157:261–269

    Article  Google Scholar 

  20. Yu S, Jiang Z (2020) Design of the navigation system through the fusion of IMU and wheeled encoders. Comput Commun 160:730–737

    Article  Google Scholar 

  21. Sasiadek J, Hartana P (2001) Sensor fusion for dead-reckoning mobile robot navigation. IFAC Proc Vol 34(4):251–256

    Article  Google Scholar 

  22. Mekonnen G, Kumar S, Pathak PM (2016) Wireless hybrid visual servoing of omnidirectional wheeled mobile robots. Robot Auton Syst 75:450–462

    Article  Google Scholar 

  23. Panah A, Motameni H, Ebrahimnejad A (2021) An efficient computational hybrid filter to the slam problem for an autonomous wheeled mobile robot. Int J Control Autom Syst 19(10):3533–3542

    Article  Google Scholar 

  24. Cortés S, Solin A, Kannala J (2018) IEEE 28th international workshop on machine learning for signal processing (MLSP) (IEEE, 2018), pp 1–6

  25. Chen C, Lu X, Markham A, Trigoni N (2018) Thirty-second AAAI conference on artificial intelligence

  26. Wagstaff B, Kelly J (2018) International conference on indoor positioning and indoor navigation (IPIN) (IEEE, 2018), pp 1–8

  27. Clark R, Wang S, Wen H, Markham A, Trigoni N (2017) Thirty-first AAAI conference on artificial intelligence

  28. Han S, Meng Z, Zhang X, Yan Y (2021) Hybrid deep recurrent neural networks for noise reduction of MEMS-IMU with static and dynamic conditions. Micromachines 12(2):214

    Article  Google Scholar 

  29. Jiang C, Chen Y, Chen S, Bo Y, Li W, Tian W, Guo J (2019) A mixed deep recurrent neural network for MEMS gyroscope noise suppressing. Electronics 8(2):181

    Article  Google Scholar 

  30. Pascanu R, Mikolov T, Bengio Y (2012) Understanding the exploding gradient problem. CoRR, abs/1211.5063, 2, 417

  31. Pascanu R, Mikolov T, Bengio Y (2013) International conference on machine learning, pp 1310–1318

  32. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555

  33. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473

  34. Shewalkar A, Nyavanandi D, Ludwig SA (2019) Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J Artif Intell Soft Comput Res 9(4):235–245

    Article  Google Scholar 

  35. Yang S, Yu X, Zhou Y (2020) International workshop on electronic communication and artificial intelligence (IWECAI) (IEEE, 2020), pp 98–101

  36. Raza MR, Hussain W, Merigó JM (2021) Innovations in intelligent systems and applications conference (ASYU) (IEEE, 2021), pp 1–5

  37. Yamak PT, Yujian L, Gadosey PK (2019) In: Proceedings of the 2019 2nd international conference on algorithms, computing and artificial intelligence, pp 49–55

  38. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv preprint arXiv:1406.1078

  39. Chollet F (2018) Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co .KG, Wachtendonk

    Google Scholar 

  40. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{OSDI\}\) 16), pp 265–283

  41. Alpaydin E (2020) Introduction to machine learning. MIT Press, Cambridge

  42. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  43. Kobayashi H, Katsura S, Ohnishi K (2007) An analysis of parameter variations of disturbance observer for motion control. IEEE Trans Ind Electron 54(6):3413–3421

    Article  Google Scholar 

  44. Sariyildiz E, Ohnishi K (2014) Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans Industr Electron 62(1):414–422

    Article  Google Scholar 

  45. Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18(3):236–258

    Article  Google Scholar 

  46. Kim J, Woo S, Kim J, Do J, Kim S, Bae S (2012) Inertial navigation system for an automatic guided vehicle with mecanum wheels. Int J Precis Eng Manuf cturing 13(3):379–386

    Article  Google Scholar 

  47. Yuan Z, Tian Y, Yin Y, Wang S, Liu J, Wu L (2019) Trajectory tracking control of a four mecanum wheeled mobile platform: an extended state observer-based sliding mode approach. IET Control Theory Appl 14(3):415–426

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the Internal Research Grant “RDI.2020.1” of Istanbul Bilgi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eray A. Baran.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article and have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canbek, K.O., Yalcin, H. & Baran, E.A. Drift compensation of a holonomic mobile robot using recurrent neural networks. Intel Serv Robotics 15, 399–409 (2022). https://doi.org/10.1007/s11370-022-00430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-022-00430-w

Keywords

Navigation