Skip to main content
Log in

Development of the sub-10 cm, sub-100 g jumping–crawling robot

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

The accessible environment and locomotion performance of a robot are governed by the scale of the robot. The operating time and speed can be increased as the scale of the robot increases. However, the size of the robot does limit the accessible environment: the robot cannot pass through a space smaller than its size. Therefore, to explore an environment containing gaps, holes, and crevices, a small-scale robot is required. In this paper, we propose a sub-10 cm, sub-100 g scale jumping–crawling robot. The proposed robot consists of crawling, jumping, and self-righting mechanisms. The combination of crawling and jumping allowed the robot to overcome obstacles of various sizes. To reduce the weight and size of the robot, we employed a smart composite microstructures (SCM) design method and utilized a shape memory alloy (SMA) actuator. All the mechanisms and electronic components were compactly integrated into a single robot. The robot can crawl with the maximum speed of 3.94 cm/s (0.4 BL/s), and jump 19 cm which is 2.2 times its body height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Birkmeyer P, Peterson K, Fearing RS (2009) DASH: a dynamic 16g hexapedal robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. St. Louis, MO, USA, pp 2689–2689. https://doi.org/10.1109/IROS.2009.5354561

  2. Kim S, Clark E, Cutkosky MR (2006) iSprawl: design and tuning for high-speed autonomous open-loop running. Int J Robot Res 25(9):903–912. https://doi.org/10.1177/0278364906069150

    Article  Google Scholar 

  3. Morrey B, Lambrecht AD, Horchler RE et al (2003) Highly mobile and robust small quadruped robots. In: Proceedings of the IEEE/RSJ international conference intelligent robots systems. Las Vegas, NV, USA, pp 2689–2689. https://doi.org/10.1109/IROS.2003.1250609

  4. Saranli U, Buehler M, Koditschek DE (2001) RHex: a simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631. https://doi.org/10.1177/0278364012206757

    Article  Google Scholar 

  5. Zarrouk D, Pullin A, Kohut N et al (2013) STAR, a sprawl tuned autonomous robot. In: Proceedings of the IEEE international conference on robotics automation. Karlsruhe, Germany, pp 20–25. https://doi.org/10.1109/ICRA.2013.6630551

  6. Mi J, Wang Y, Li C (2022) Omni-roach: A legged robot capable of traversing multiple types of large obstacles and self-righting. In: Proceedings of the IEEE international conference on robotics automation. Philadelphia, PA, USA, pp 20–25. https://doi.org/10.1109/ICRA46639.2022.9811372

  7. Kovac M, Fuchs M, Guignard A et al (2008) A miniature 7g jumping robot. In: Proceedings of the IEEE International Conference on Robotics Automation. Pasadena, CA, USA, pp 373–378. https://doi.org/10.1109/ROBOT.2008.4543236

  8. Zhao J, Xu J, Gao B et al (2013) MSU jumper: a single-motor-actuated miniature steerable jumping robot. IEEE Trans Robot 29(3):602–614. https://doi.org/10.1109/TRO.2013.2249371

    Article  Google Scholar 

  9. Haldane DW, Plecnik MM, Yim JK et al (2016) Robotic vertical jumping agility via series-elastic power modulation. Sci Robot 1(1):eaag2048. https://doi.org/10.1126/scirobotics.aag2048

    Article  Google Scholar 

  10. Yim S, Baek SM, Jung GP et al (2018) An omnidirectional jumper with expanded movability via steering, self-righting and take-off angle adjustment. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. Madrid, Spain, pp 416–421. https://doi.org/10.1109/IROS.2018.8594372

  11. Kim S, Spenko M, Trujillo S et al (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74. https://doi.org/10.1109/TRO.2007.909786

    Article  Google Scholar 

  12. Asbeck AT, Cutkosky MR (2012) Designing compliant spine mechanisms for climbing. J Mech Robot 4(3):031007. https://doi.org/10.1115/1.40066591

    Article  Google Scholar 

  13. Murphy MP, Sitti M (2007) Waalbot: an agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Trans Mechatron 12(3):330–338. https://doi.org/10.1109/TMECH.2007.897277

    Article  Google Scholar 

  14. Spenko MJ, Haynes GC, Saunders JA et al (2008) Biologically inspired climbing with a hexapedal robot. J F Robot 25(4–5):223–242. https://doi.org/10.1002/rob.20238

    Article  Google Scholar 

  15. Full RF, Tu MS (1991) Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J Exp Biol 156(1):215–231. https://doi.org/10.1242/jeb.156.1.215

    Article  Google Scholar 

  16. Sutton GP, Burrows M (2011) Biomechanics of jumping in the flea. J Exp Biol 214(5):836–847. https://doi.org/10.1242/jeb.052399

    Article  Google Scholar 

  17. Autumm K, Sitti M, Liang YA et al (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci 99(19):12252–12256. https://doi.org/10.1073/pnas.192252799

    Article  Google Scholar 

  18. Lambrecht BGA, Horchler AD, Quinn RD (2005) A small, insect-inspired robot that runs and jumps. In: Proceedings of the IEEE international conference on robotics and automation. Spain, pp 1240–1245. https://doi.org/10.1109/ROBOT.2005.1570285

  19. Jung GP, Casares CS, Lee J et al (2019) JumpRoACH: a trajectory-adjustable integrated jumping–crawling robot. IEEE/ASME Trans Mechatron 24(3):947–958. https://doi.org/10.1109/TMECH.2019.2907743

    Article  Google Scholar 

  20. Chae SH, Baek SM, Lee J et al (2022) Agile and energy-efficient jumping–crawling robot through rapid transition of locomotion and enhanced jumping height adjustment. IEEE/ASME Trans Mechatron 27(6):5890–5901. https://doi.org/10.1109/TMECH.2022.3190673

    Article  Google Scholar 

  21. Zhakypov Z, Mori K, Hosoda K et al (2019) Designing minimal and scalable insect-inspired multi-locomotion millirobots. Nature 571(7765):381–386. https://doi.org/10.1038/s41586-019-1388-8

    Article  Google Scholar 

  22. Hu W, Lum GZ, Mastrangeli M et al (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81–85. https://doi.org/10.1038/nature25443

    Article  Google Scholar 

  23. Zhao J, W Y, Xi N et al (2005) A miniature 25 grams running and jumping robot. In: Proceedings of the IEEE international conference on robotics automation. Hong Kong, China, pp 5115–5120. https://doi.org/10.1109/ICRA.2014.6907609

  24. Vidyasagar A, Zufferey JC, Floreano D et al (2015) Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir Biomim 10(2):025006. https://doi.org/10.1088/1748-3190/10/2/025006

    Article  Google Scholar 

  25. Desbiens AL, Pope MT, Christensen DL et al (2014) Design principles for efficient, repeated jumpgliding. Bioinspir Biomim 9(2):025009. https://doi.org/10.1088/1748-3182/9/2/025009

    Article  Google Scholar 

  26. Baek SM, Yim S, Chae SH et al (2020) Ladybird beetle-inspired compliant origami. Sci Robot 5(41):6262. https://doi.org/10.1088/1748-3182/9/2/025009

    Article  Google Scholar 

  27. Woodward MA, Sitti M (2014) MultiMo-Bat: a biologically inspired integrated jumping-gliding robot. Int J Robot Res 33(12):1511–1529. https://doi.org/10.1177/0278364914541301

    Article  Google Scholar 

  28. Pope MT, Kimes CW, Jiang H et al (2017) A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans Robot 33(1):38–48. https://doi.org/10.1109/TRO.2016.2623346

    Article  Google Scholar 

  29. Dickson JD, Clark JE (2013) Design of a multimodal climbing and gliding robotic platform. IEEE/ASME Trans Mechatron 18(2):494–505. https://doi.org/10.1109/TMECH.2012.2223708

    Article  Google Scholar 

  30. Alexander RM (2003) Principles of animal locomotion. Princeton University Press, Princeton

    Google Scholar 

  31. Lee J, Jung GP, Baek SM et al (2020) CaseCrawler: a lightweight and low-profile crawling phone case robot. IEEE Robot Autom Lett 5(4):5858–5865. https://doi.org/10.1109/LRA.2020.3010205

    Article  Google Scholar 

  32. Kaspari M, Weiser MD (1999) The size-grain hypothesis and interspecific scaling in ants. Funct Ecol 13(4):530–538. https://doi.org/10.1046/j.1365-2435.1999.00343.x

  33. Wood RJ, Avadhanula S, Sahai R et al (2008) Microrobot design using fiber reinforced composites. J Mech Des 130(5):052304. https://doi.org/10.1115/1.2885509

    Article  Google Scholar 

  34. An SM, Ryu J, Cho M et al (2012) Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Mater Struct 21(5):055009. https://doi.org/10.1088/0964-1726/21/5/055009

Download references

Acknowledgements

This research is performed based on the cooperation with the Defense Acquisition Program Administration and Defense Rapid Acquisition Technology Research Institute’s Critical Technology R &D program (No. UC190002D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Jin Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 34047 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, S., Baek, SM., Lee, P. et al. Development of the sub-10 cm, sub-100 g jumping–crawling robot. Intel Serv Robotics 17, 19–32 (2024). https://doi.org/10.1007/s11370-023-00497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-023-00497-z

Keywords

Navigation